Nuprl Lemma : rat-complex-iter-subdiv-pos-length

[k,n:ℕ]. ∀[K:{K:n-dim-complex| 0 < ||K||} ]. ∀[j:ℕ].  0 < ||K'^(j)||


Proof




Definitions occuring in Statement :  length: ||as|| nat: less_than: a < b uall: [x:A]. B[x] set: {x:A| B[x]}  natural_number: $n rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  guard: {T} bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 or: P ∨ Q decidable: Dec(P) rational-cube-complex: n-dim-complex subtype_rel: A ⊆B less_than': less_than'(a;b) le: A ≤ B rev_implies:  Q iff: ⇐⇒ Q rat-complex-iter-subdiv: Error :rat-complex-iter-subdiv,  prop: and: P ∧ Q top: Top all: x:A. B[x] exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff eqff_to_assert assert_of_lt_int eqtt_to_assert uiff_transitivity int_term_value_subtract_lemma itermSubtract_wf subtract_wf Error :rat-complex-subdiv-non-nil,  bnot_wf le_wf le_int_wf less_than_wf assert_wf int_subtype_base bool_wf equal-wf-base lt_int_wf istype-nat rational-cube-complex_wf int_formula_prop_not_lemma intformnot_wf decidable__le primrec-unroll subtract-1-ge-0 istype-le Error :rat-complex-iter-subdiv_wf,  rational-cube_wf length_wf rless-int primrec0_lemma member-less_than istype-less_than ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties
Rules used in proof :  equalitySymmetry equalityTransitivity equalityIstype equalityElimination baseClosed closedConclusion baseApply setIsType unionElimination applyEquality dependent_set_memberEquality_alt productElimination because_Cache inhabitedIsType functionIsTypeImplies universeIsType independent_pairFormation sqequalRule voidElimination isect_memberEquality_alt dependent_functionElimination int_eqEquality lambdaEquality_alt dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality lambdaFormation_alt intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:\{K:n-dim-complex|  0  <  ||K||\}  ].  \mforall{}[j:\mBbbN{}].    0  <  ||K'\^{}(j)||



Date html generated: 2019_11_04-PM-04_43_56
Last ObjectModification: 2019_10_31-PM-00_18_35

Theory : real!vectors


Home Index