Nuprl Lemma : rat-sub-div-diameter
∀[k,n:ℕ]. ∀[K:n-dim-complex].
  rat-complex-diameter(k;(K)') ≤ ((r1/r(2)) * rat-complex-diameter(k;K)) supposing 0 < ||K||
Proof
Definitions occuring in Statement : 
rat-complex-diameter: rat-complex-diameter(k;K)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
length: ||as||
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
rat-complex-subdiv: (K)'
, 
rational-cube-complex: n-dim-complex
Definitions unfolded in proof : 
l_member: (x ∈ l)
, 
nat_plus: ℕ+
, 
rev_uimplies: rev_uimplies(P;Q)
, 
subtract: n - m
, 
cand: A c∧ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
rat-complex-diameter: rat-complex-diameter(k;K)
, 
sq_stable: SqStable(P)
, 
prop: ℙ
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
rational-cube-complex: n-dim-complex
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rmaximum_ub, 
real_wf, 
rleq_wf, 
rmul_comm, 
istype-false, 
rleq-int-fractions2, 
rmul_functionality_wrt_rleq, 
req_weakening, 
rleq_functionality, 
l_member_wf, 
zero-add, 
add-commutes, 
add-swap, 
add-associates, 
less_than_wf, 
select_member, 
rat-half-cube-diameter, 
member-rat-complex-subdiv2, 
iff_weakening_equal, 
subtype_rel_self, 
istype-universe, 
list_wf, 
true_wf, 
squash_wf, 
le_wf, 
le_witness_for_triv, 
rmaximum_wf, 
int_seg_wf, 
false_wf, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermSubtract_wf, 
itermAdd_wf, 
intformless_wf, 
subtract-is-int-iff, 
add-is-int-iff, 
istype-le, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
select_wf, 
rat-cube-diameter_wf, 
subtract_wf, 
rmaximum-lub, 
istype-nat, 
rational-cube-complex_wf, 
rational-cube_wf, 
length_wf, 
istype-less_than, 
rless_wf, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
rmul_wf, 
rat-complex-subdiv_wf, 
rat-complex-diameter_wf, 
sq_stable__rleq, 
Error :rat-complex-subdiv-non-nil
Rules used in proof : 
productEquality, 
productIsType, 
universeEquality, 
instantiate, 
functionIsTypeImplies, 
addEquality, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
dependent_set_memberEquality_alt, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
unionElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
lambdaFormation_alt, 
inhabitedIsType, 
imageElimination, 
universeIsType, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
independent_functionElimination, 
productElimination, 
dependent_functionElimination, 
inrFormation_alt, 
natural_numberEquality, 
closedConclusion, 
sqequalRule, 
because_Cache, 
rename, 
setElimination, 
lambdaEquality_alt, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:n-dim-complex].
    rat-complex-diameter(k;(K)')  \mleq{}  ((r1/r(2))  *  rat-complex-diameter(k;K))  supposing  0  <  ||K||
Date html generated:
2019_11_04-PM-04_43_13
Last ObjectModification:
2019_10_31-AM-09_56_26
Theory : real!vectors
Home
Index