Nuprl Lemma : rat-sub-div-diameter

[k,n:ℕ]. ∀[K:n-dim-complex].
  rat-complex-diameter(k;(K)') ≤ ((r1/r(2)) rat-complex-diameter(k;K)) supposing 0 < ||K||


Proof




Definitions occuring in Statement :  rat-complex-diameter: rat-complex-diameter(k;K) rdiv: (x/y) rleq: x ≤ y rmul: b int-to-real: r(n) length: ||as|| nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] natural_number: $n rat-complex-subdiv: (K)' rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  l_member: (x ∈ l) nat_plus: + rev_uimplies: rev_uimplies(P;Q) subtract: m cand: c∧ B rnonneg: rnonneg(x) rleq: x ≤ y so_apply: x[s] uiff: uiff(P;Q) top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A decidable: Dec(P) ge: i ≥  nat: le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} so_lambda: λ2x.t[x] rat-complex-diameter: rat-complex-diameter(k;K) sq_stable: SqStable(P) prop: true: True less_than': less_than'(a;b) squash: T less_than: a < b implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] or: P ∨ Q guard: {T} rneq: x ≠ y rational-cube-complex: n-dim-complex subtype_rel: A ⊆B member: t ∈ T uimplies: supposing a uall: [x:A]. B[x]
Lemmas referenced :  rmaximum_ub real_wf rleq_wf rmul_comm istype-false rleq-int-fractions2 rmul_functionality_wrt_rleq req_weakening rleq_functionality l_member_wf zero-add add-commutes add-swap add-associates less_than_wf select_member rat-half-cube-diameter member-rat-complex-subdiv2 iff_weakening_equal subtype_rel_self istype-universe list_wf true_wf squash_wf le_wf le_witness_for_triv rmaximum_wf int_seg_wf false_wf int_term_value_subtract_lemma int_term_value_add_lemma int_formula_prop_less_lemma itermSubtract_wf itermAdd_wf intformless_wf subtract-is-int-iff add-is-int-iff istype-le decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties select_wf rat-cube-diameter_wf subtract_wf rmaximum-lub istype-nat rational-cube-complex_wf rational-cube_wf length_wf istype-less_than rless_wf rless-int int-to-real_wf rdiv_wf rmul_wf rat-complex-subdiv_wf rat-complex-diameter_wf sq_stable__rleq Error :rat-complex-subdiv-non-nil
Rules used in proof :  productEquality productIsType universeEquality instantiate functionIsTypeImplies addEquality baseApply promote_hyp pointwiseFunctionality dependent_set_memberEquality_alt voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt approximateComputation unionElimination equalitySymmetry equalityTransitivity equalityIstype lambdaFormation_alt inhabitedIsType imageElimination universeIsType baseClosed imageMemberEquality independent_pairFormation independent_functionElimination productElimination dependent_functionElimination inrFormation_alt natural_numberEquality closedConclusion sqequalRule because_Cache rename setElimination lambdaEquality_alt applyEquality hypothesis independent_isectElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:n-dim-complex].
    rat-complex-diameter(k;(K)')  \mleq{}  ((r1/r(2))  *  rat-complex-diameter(k;K))  supposing  0  <  ||K||



Date html generated: 2019_11_04-PM-04_43_13
Last ObjectModification: 2019_10_31-AM-09_56_26

Theory : real!vectors


Home Index