Nuprl Lemma : rmaximum_ub

[k,n,m:ℤ]. ∀[x:{n..m 1-} ⟶ ℝ].  (x[k] ≤ rmaximum(n;m;i.x[i])) supposing ((k ≤ m) and (n ≤ k))


Proof




Definitions occuring in Statement :  rmaximum: rmaximum(n;m;k.x[k]) rleq: x ≤ y real: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  rge: x ≥ y rev_uimplies: rev_uimplies(P;Q) true: True less_than': less_than'(a;b) subtract: m rev_implies:  Q iff: ⇐⇒ Q bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 sq_type: SQType(T) ge: i ≥  guard: {T} nat: rmaximum: rmaximum(n;m;k.x[k]) subtype_rel: A ⊆B lelt: i ≤ j < k int_seg: {i..j-} so_apply: x[s] so_lambda: λ2x.t[x] prop: top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) nat_plus: + false: False not: ¬A and: P ∧ Q le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y implies:  Q or: P ∨ Q decidable: Dec(P) all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rmax_functionality_wrt_rleq rleq_functionality_wrt_implies rleq-rmax subtract-add-cancel subtype_rel_self le-add-cancel add-commutes add-zero zero-add zero-mul add-mul-special minus-one-mul-top add-swap minus-one-mul minus-add add-associates condition-implies-le not-le-2 false_wf le_reflexive int_seg_subtype subtype_rel_function assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff eqff_to_assert bnot_wf le_int_wf assert_of_lt_int eqtt_to_assert assert_wf equal-wf-base uiff_transitivity bool_wf lt_int_wf primrec-unroll rleq_weakening_equal equal_wf primrec0_lemma int_seg_properties rmax_wf primrec_wf less_than_wf ge_wf int_formula_prop_eq_lemma intformeq_wf decidable__equal_int nat_properties int_subtype_base subtype_base_sq nat_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf real_wf le_wf nat_plus_wf lelt_wf int_term_value_constant_lemma int_term_value_add_lemma int_formula_prop_less_lemma itermConstant_wf itermAdd_wf intformless_wf decidable__lt int_seg_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat nat_plus_properties rmaximum_wf rsub_wf less_than'_wf decidable__le
Rules used in proof :  multiplyEquality baseClosed closedConclusion baseApply equalityElimination intWeakElimination applyLambdaEquality cumulativity instantiate lambdaFormation functionEquality equalitySymmetry equalityTransitivity axiomEquality minusEquality dependent_set_memberEquality addEquality functionExtensionality independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation approximateComputation natural_numberEquality rename setElimination independent_isectElimination applyEquality isectElimination because_Cache independent_pairEquality productElimination lambdaEquality sqequalRule independent_functionElimination unionElimination hypothesis hypothesisEquality dependent_functionElimination sqequalHypSubstitution extract_by_obid thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k,n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    (x[k]  \mleq{}  rmaximum(n;m;i.x[i]))  supposing  ((k  \mleq{}  m)  and  (n  \mleq{}  k))



Date html generated: 2018_05_22-PM-01_57_17
Last ObjectModification: 2018_05_21-AM-00_14_13

Theory : reals


Home Index