Nuprl Lemma : member-rat-complex-subdiv2
∀k,n:ℕ. ∀K:n-dim-complex. ∀c:ℚCube(k).  ((c ∈ (K)') ⇐⇒ ∃a:ℚCube(k). ((a ∈ K) ∧ (↑is-half-cube(k;c;a))))
Proof
Definitions occuring in Statement : 
rat-complex-subdiv: (K)', 
rational-cube-complex: n-dim-complex, 
is-half-cube: is-half-cube(k;h;c), 
rational-cube: ℚCube(k), 
l_member: (x ∈ l), 
nat: ℕ, 
assert: ↑b, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
top: Top, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
ge: i ≥ j , 
bfalse: ff, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
guard: {T}, 
sq_type: SQType(T), 
or: P ∨ Q, 
rat-cube-dimension: dim(c), 
iff: P ⇐⇒ Q, 
prop: ℙ, 
uimplies: b supposing a, 
so_apply: x[s], 
nat: ℕ, 
int_seg: {i..j-}, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
rational-cube-complex: n-dim-complex, 
all: ∀x:A. B[x]
Lemmas referenced : 
assert_wf, 
subtype_rel_list_set, 
list-subtype, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
itermConstant_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
assert_of_bnot, 
eqff_to_assert, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
inhabited-rat-cube_wf, 
l_member_wf, 
le_wf, 
int_subtype_base, 
istype-int, 
lelt_wf, 
set_subtype_base, 
rat-cube-dimension_wf, 
equal-wf-base, 
l_all_iff, 
istype-nat, 
rational-cube-complex_wf, 
rational-cube_wf, 
member-rat-complex-subdiv
Rules used in proof : 
independent_pairFormation, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
cumulativity, 
instantiate, 
unionElimination, 
independent_functionElimination, 
setIsType, 
because_Cache, 
independent_isectElimination, 
addEquality, 
natural_numberEquality, 
minusEquality, 
applyEquality, 
intEquality, 
lambdaEquality_alt, 
sqequalRule, 
productElimination, 
inhabitedIsType, 
isectElimination, 
universeIsType, 
equalitySymmetry, 
equalityTransitivity, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
hypothesis, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k,n:\mBbbN{}.  \mforall{}K:n-dim-complex.  \mforall{}c:\mBbbQ{}Cube(k).
    ((c  \mmember{}  (K)')  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:\mBbbQ{}Cube(k).  ((a  \mmember{}  K)  \mwedge{}  (\muparrow{}is-half-cube(k;c;a))))
Date html generated:
2019_10_29-AM-07_59_40
Last ObjectModification:
2019_10_22-AM-10_48_40
Theory : rationals
Home
Index