Nuprl Lemma : rat-complex-diameter_wf

[k:ℕ]. ∀[K:ℚCube(k) List].  rat-complex-diameter(k;K) ∈ ℝ supposing 0 < ||K||


Proof




Definitions occuring in Statement :  rat-complex-diameter: rat-complex-diameter(k;K) real: length: ||as|| list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n rational-cube: Cube(k)
Definitions unfolded in proof :  so_apply: x[s] le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} so_lambda: λ2x.t[x] squash: T less_than: a < b prop: and: P ∧ Q top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  nat: rat-complex-diameter: rat-complex-diameter(k;K) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat list_wf istype-less_than int_seg_wf int_term_value_add_lemma itermAdd_wf decidable__lt int_seg_properties select_wf rat-cube-diameter_wf int_formula_prop_less_lemma int_term_value_subtract_lemma intformless_wf itermSubtract_wf istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties rational-cube_wf length_wf subtract_wf rmaximum_wf
Rules used in proof :  inhabitedIsType isectIsTypeImplies equalitySymmetry equalityTransitivity axiomEquality addEquality because_Cache productElimination imageElimination universeIsType independent_pairFormation voidElimination isect_memberEquality_alt int_eqEquality lambdaEquality_alt dependent_pairFormation_alt independent_functionElimination approximateComputation unionElimination dependent_set_memberEquality_alt dependent_functionElimination rename setElimination independent_isectElimination hypothesis hypothesisEquality natural_numberEquality closedConclusion thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K:\mBbbQ{}Cube(k)  List].    rat-complex-diameter(k;K)  \mmember{}  \mBbbR{}  supposing  0  <  ||K||



Date html generated: 2019_10_31-AM-06_03_23
Last ObjectModification: 2019_10_31-AM-00_24_48

Theory : real!vectors


Home Index