Nuprl Lemma : rat-complex-diameter_wf
∀[k:ℕ]. ∀[K:ℚCube(k) List].  rat-complex-diameter(k;K) ∈ ℝ supposing 0 < ||K||
Proof
Definitions occuring in Statement : 
rat-complex-diameter: rat-complex-diameter(k;K)
, 
real: ℝ
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
so_apply: x[s]
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
squash: ↓T
, 
less_than: a < b
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
ge: i ≥ j 
, 
nat: ℕ
, 
rat-complex-diameter: rat-complex-diameter(k;K)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
list_wf, 
istype-less_than, 
int_seg_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
decidable__lt, 
int_seg_properties, 
select_wf, 
rat-cube-diameter_wf, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
intformless_wf, 
itermSubtract_wf, 
istype-le, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
rational-cube_wf, 
length_wf, 
subtract_wf, 
rmaximum_wf
Rules used in proof : 
inhabitedIsType, 
isectIsTypeImplies, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
addEquality, 
because_Cache, 
productElimination, 
imageElimination, 
universeIsType, 
independent_pairFormation, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
rename, 
setElimination, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
closedConclusion, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K:\mBbbQ{}Cube(k)  List].    rat-complex-diameter(k;K)  \mmember{}  \mBbbR{}  supposing  0  <  ||K||
Date html generated:
2019_10_31-AM-06_03_23
Last ObjectModification:
2019_10_31-AM-00_24_48
Theory : real!vectors
Home
Index