Nuprl Lemma : rat-cube-complex-polyhedron_functionality
∀[k:ℕ]. ∀[K,L:ℚCube(k) List].  |K| ≡ |L| supposing permutation(ℚCube(k);K;L)
Proof
Definitions occuring in Statement : 
rat-cube-complex-polyhedron: |K|
, 
permutation: permutation(T;L1;L2)
, 
list: T List
, 
nat: ℕ
, 
ext-eq: A ≡ B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
false: False
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
not: ¬A
, 
rat-cube-complex-polyhedron: |K|
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
ext-eq: A ≡ B
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
list_wf, 
permutation_wf, 
rat-cube-complex-polyhedron_wf, 
istype-void, 
l_exists_wf, 
l_member_wf, 
in-rat-cube_wf, 
l_exists_iff, 
rational-cube_wf, 
member-permutation
Rules used in proof : 
inhabitedIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
axiomEquality, 
independent_pairEquality, 
functionIsType, 
voidElimination, 
productIsType, 
promote_hyp, 
dependent_pairFormation_alt, 
productElimination, 
universeIsType, 
setIsType, 
sqequalRule, 
because_Cache, 
lambdaFormation_alt, 
dependent_set_memberEquality_alt, 
rename, 
setElimination, 
lambdaEquality_alt, 
independent_pairFormation, 
independent_functionElimination, 
dependent_functionElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K,L:\mBbbQ{}Cube(k)  List].    |K|  \mequiv{}  |L|  supposing  permutation(\mBbbQ{}Cube(k);K;L)
Date html generated:
2019_11_04-PM-04_43_40
Last ObjectModification:
2019_11_02-PM-10_48_02
Theory : real!vectors
Home
Index