Nuprl Lemma : rat-cube-complex-polyhedron_functionality

[k:ℕ]. ∀[K,L:ℚCube(k) List].  |K| ≡ |L| supposing permutation(ℚCube(k);K;L)


Proof




Definitions occuring in Statement :  rat-cube-complex-polyhedron: |K| permutation: permutation(T;L1;L2) list: List nat: ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] rational-cube: Cube(k)
Definitions unfolded in proof :  false: False cand: c∧ B exists: x:A. B[x] rev_implies:  Q iff: ⇐⇒ Q so_apply: x[s] prop: so_lambda: λ2x.t[x] not: ¬A rat-cube-complex-polyhedron: |K| subtype_rel: A ⊆B and: P ∧ Q ext-eq: A ≡ B guard: {T} implies:  Q all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat list_wf permutation_wf rat-cube-complex-polyhedron_wf istype-void l_exists_wf l_member_wf in-rat-cube_wf l_exists_iff rational-cube_wf member-permutation
Rules used in proof :  inhabitedIsType isectIsTypeImplies isect_memberEquality_alt axiomEquality independent_pairEquality functionIsType voidElimination productIsType promote_hyp dependent_pairFormation_alt productElimination universeIsType setIsType sqequalRule because_Cache lambdaFormation_alt dependent_set_memberEquality_alt rename setElimination lambdaEquality_alt independent_pairFormation independent_functionElimination dependent_functionElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K,L:\mBbbQ{}Cube(k)  List].    |K|  \mequiv{}  |L|  supposing  permutation(\mBbbQ{}Cube(k);K;L)



Date html generated: 2019_11_04-PM-04_43_40
Last ObjectModification: 2019_11_02-PM-10_48_02

Theory : real!vectors


Home Index