Nuprl Lemma : rat-cube-sub-complex-polyhedron-subtype

[k:ℕ]. ∀[K:ℚCube(k) List]. ∀[P:{c:ℚCube(k)| (c ∈ K)}  ⟶ 𝔹].  (|rat-cube-sub-complex(P;K)| ⊆|K|)


Proof




Definitions occuring in Statement :  rat-cube-complex-polyhedron: |K| l_member: (x ∈ l) list: List nat: bool: 𝔹 subtype_rel: A ⊆B uall: [x:A]. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] rat-cube-sub-complex: rat-cube-sub-complex(P;L) rational-cube: Cube(k)
Definitions unfolded in proof :  l_subset: l_subset(T;as;bs) implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] prop: subtype_rel: A ⊆B uimplies: supposing a rat-cube-sub-complex: rat-cube-sub-complex(P;L) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  member_filter_2 l_subset-l_contains istype-nat list_wf bool_wf l_member_wf rational-cube_wf filter_wf5 rat-cube-complex-polyhedron-subtype
Rules used in proof :  because_Cache lambdaFormation_alt independent_functionElimination productElimination dependent_functionElimination inhabitedIsType isectIsTypeImplies isect_memberEquality_alt universeIsType setIsType functionIsType axiomEquality sqequalRule independent_isectElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K:\mBbbQ{}Cube(k)  List].  \mforall{}[P:\{c:\mBbbQ{}Cube(k)|  (c  \mmember{}  K)\}    {}\mrightarrow{}  \mBbbB{}].    (|rat-cube-sub-complex(P;K)|  \msubseteq{}r  |K|)



Date html generated: 2019_11_04-PM-04_44_07
Last ObjectModification: 2019_10_31-PM-10_40_51

Theory : real!vectors


Home Index