Nuprl Lemma : rat-cube-sub-complex-polyhedron-subtype
∀[k:ℕ]. ∀[K:ℚCube(k) List]. ∀[P:{c:ℚCube(k)| (c ∈ K)}  ⟶ 𝔹].  (|rat-cube-sub-complex(P;K)| ⊆r |K|)
Proof
Definitions occuring in Statement : 
rat-cube-complex-polyhedron: |K|
, 
l_member: (x ∈ l)
, 
list: T List
, 
nat: ℕ
, 
bool: 𝔹
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
rat-cube-sub-complex: rat-cube-sub-complex(P;L)
, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
l_subset: l_subset(T;as;bs)
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
rat-cube-sub-complex: rat-cube-sub-complex(P;L)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
member_filter_2, 
l_subset-l_contains, 
istype-nat, 
list_wf, 
bool_wf, 
l_member_wf, 
rational-cube_wf, 
filter_wf5, 
rat-cube-complex-polyhedron-subtype
Rules used in proof : 
because_Cache, 
lambdaFormation_alt, 
independent_functionElimination, 
productElimination, 
dependent_functionElimination, 
inhabitedIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
universeIsType, 
setIsType, 
functionIsType, 
axiomEquality, 
sqequalRule, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K:\mBbbQ{}Cube(k)  List].  \mforall{}[P:\{c:\mBbbQ{}Cube(k)|  (c  \mmember{}  K)\}    {}\mrightarrow{}  \mBbbB{}].    (|rat-cube-sub-complex(P;K)|  \msubseteq{}r  |K|)
Date html generated:
2019_11_04-PM-04_44_07
Last ObjectModification:
2019_10_31-PM-10_40_51
Theory : real!vectors
Home
Index