Nuprl Lemma : rat-cube-complex-polyhedron-subtype

[k:ℕ]. ∀[K,L:ℚCube(k) List].  |L| ⊆|K| supposing L ⊆ K


Proof




Definitions occuring in Statement :  rat-cube-complex-polyhedron: |K| l_contains: A ⊆ B list: List nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] rational-cube: Cube(k)
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q guard: {T} true: True cand: c∧ B l_member: (x ∈ l) l_all: (∀x∈L.P[x]) l_contains: A ⊆ B prop: top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  nat: squash: T less_than: a < b le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} exists: x:A. B[x] implies:  Q not: ¬A stable-union: Error :stable-union,  rat-cube-complex-polyhedron: |K| subtype_rel: A ⊆B uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  iff_weakening_equal subtype_rel_self real-vec_wf true_wf squash_wf istype-less_than istype-nat list_wf l_contains_wf rat-cube-complex-polyhedron_wf int_formula_prop_less_lemma intformless_wf istype-le decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties select_wf in-rat-cube_wf rational-cube_wf length_wf int_seg_wf
Rules used in proof :  universeEquality instantiate baseClosed imageMemberEquality equalitySymmetry equalityTransitivity applyEquality lambdaFormation_alt inhabitedIsType isectIsTypeImplies axiomEquality independent_pairFormation voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation unionElimination dependent_functionElimination imageElimination productElimination independent_isectElimination because_Cache hypothesis natural_numberEquality isectElimination extract_by_obid universeIsType productIsType functionIsType sqequalRule hypothesisEquality dependent_set_memberEquality_alt rename thin setElimination sqequalHypSubstitution lambdaEquality_alt cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K,L:\mBbbQ{}Cube(k)  List].    |L|  \msubseteq{}r  |K|  supposing  L  \msubseteq{}  K



Date html generated: 2019_10_30-AM-10_13_10
Last ObjectModification: 2019_10_29-AM-10_35_12

Theory : real!vectors


Home Index