Nuprl Lemma : rat-cube-complex-polyhedron-subtype
∀[k:ℕ]. ∀[K,L:ℚCube(k) List].  |L| ⊆r |K| supposing L ⊆ K
Proof
Definitions occuring in Statement : 
rat-cube-complex-polyhedron: |K|
, 
l_contains: A ⊆ B
, 
list: T List
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
true: True
, 
cand: A c∧ B
, 
l_member: (x ∈ l)
, 
l_all: (∀x∈L.P[x])
, 
l_contains: A ⊆ B
, 
prop: ℙ
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
ge: i ≥ j 
, 
nat: ℕ
, 
squash: ↓T
, 
less_than: a < b
, 
le: A ≤ B
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
stable-union: Error :stable-union, 
rat-cube-complex-polyhedron: |K|
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
iff_weakening_equal, 
subtype_rel_self, 
real-vec_wf, 
true_wf, 
squash_wf, 
istype-less_than, 
istype-nat, 
list_wf, 
l_contains_wf, 
rat-cube-complex-polyhedron_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
istype-le, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
select_wf, 
in-rat-cube_wf, 
rational-cube_wf, 
length_wf, 
int_seg_wf
Rules used in proof : 
universeEquality, 
instantiate, 
baseClosed, 
imageMemberEquality, 
equalitySymmetry, 
equalityTransitivity, 
applyEquality, 
lambdaFormation_alt, 
inhabitedIsType, 
isectIsTypeImplies, 
axiomEquality, 
independent_pairFormation, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
dependent_functionElimination, 
imageElimination, 
productElimination, 
independent_isectElimination, 
because_Cache, 
hypothesis, 
natural_numberEquality, 
isectElimination, 
extract_by_obid, 
universeIsType, 
productIsType, 
functionIsType, 
sqequalRule, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K,L:\mBbbQ{}Cube(k)  List].    |L|  \msubseteq{}r  |K|  supposing  L  \msubseteq{}  K
Date html generated:
2019_10_30-AM-10_13_10
Last ObjectModification:
2019_10_29-AM-10_35_12
Theory : real!vectors
Home
Index