Nuprl Lemma : rccp-dist-nonneg
∀[k,n:ℕ]. ∀[K:{K:n-dim-complex| 0 < ||K||} ]. ∀[x:ℝ^k].  (r0 ≤ dist(x, |K|))
Proof
Definitions occuring in Statement : 
rccp-dist: dist(x, |K|)
, 
real-vec: ℝ^n
, 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
length: ||as||
, 
nat: ℕ
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
rational-cube-complex: n-dim-complex
Definitions unfolded in proof : 
rational-cube-complex: n-dim-complex
, 
and: P ∧ Q
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
uimplies: b supposing a
, 
rccp-dist: dist(x, |K|)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
rational-cube_wf, 
length_wf, 
istype-less_than, 
rational-cube-complex_wf, 
le_witness_for_triv, 
rccp-compact_wf, 
rn-prod-metric_wf, 
real-vec_wf, 
compact-dist-nonneg
Rules used in proof : 
rename, 
setElimination, 
natural_numberEquality, 
setIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
universeIsType, 
inhabitedIsType, 
functionIsTypeImplies, 
equalitySymmetry, 
equalityTransitivity, 
productElimination, 
dependent_functionElimination, 
lambdaEquality_alt, 
sqequalRule, 
independent_isectElimination, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:\{K:n-dim-complex|  0  <  ||K||\}  ].  \mforall{}[x:\mBbbR{}\^{}k].    (r0  \mleq{}  dist(x,  |K|))
Date html generated:
2019_10_31-AM-06_04_17
Last ObjectModification:
2019_10_30-PM-04_34_41
Theory : real!vectors
Home
Index