Nuprl Lemma : rccp-dist-nonneg

[k,n:ℕ]. ∀[K:{K:n-dim-complex| 0 < ||K||} ]. ∀[x:ℝ^k].  (r0 ≤ dist(x, |K|))


Proof




Definitions occuring in Statement :  rccp-dist: dist(x, |K|) real-vec: ^n rleq: x ≤ y int-to-real: r(n) length: ||as|| nat: less_than: a < b uall: [x:A]. B[x] set: {x:A| B[x]}  natural_number: $n rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  rational-cube-complex: n-dim-complex and: P ∧ Q le: A ≤ B all: x:A. B[x] rnonneg: rnonneg(x) rleq: x ≤ y uimplies: supposing a rccp-dist: dist(x, |K|) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat rational-cube_wf length_wf istype-less_than rational-cube-complex_wf le_witness_for_triv rccp-compact_wf rn-prod-metric_wf real-vec_wf compact-dist-nonneg
Rules used in proof :  rename setElimination natural_numberEquality setIsType isectIsTypeImplies isect_memberEquality_alt universeIsType inhabitedIsType functionIsTypeImplies equalitySymmetry equalityTransitivity productElimination dependent_functionElimination lambdaEquality_alt sqequalRule independent_isectElimination because_Cache hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:\{K:n-dim-complex|  0  <  ||K||\}  ].  \mforall{}[x:\mBbbR{}\^{}k].    (r0  \mleq{}  dist(x,  |K|))



Date html generated: 2019_10_31-AM-06_04_17
Last ObjectModification: 2019_10_30-PM-04_34_41

Theory : real!vectors


Home Index