Nuprl Lemma : rccp-compact_wf

[k,n:ℕ]. ∀[K:{K:n-dim-complex| 0 < ||K||} ].  (rccp-compact(k;K) ∈ mcompact(|K|;rn-prod-metric(k)))


Proof




Definitions occuring in Statement :  rccp-compact: rccp-compact(k;K) rat-cube-complex-polyhedron: |K| rn-prod-metric: rn-prod-metric(n) mcompact: mcompact(X;d) length: ||as|| nat: less_than: a < b uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  natural_number: $n rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  rat-cube-complex-polyhedron: |K| uimplies: supposing a prop: rational-cube-complex: n-dim-complex all: x:A. B[x] subtype_rel: A ⊆B rccp-compact: rccp-compact(k;K) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat istype-less_than real-vec_wf metric-on-subtype rn-prod-metric_wf rat-cube-complex-polyhedron_wf mcompact_wf rational-cube_wf length_wf less_than_wf rational-cube-complex_wf nat_wf subtype_rel_self rat-cube-complex-polyhedron-compact
Rules used in proof :  inhabitedIsType isectIsTypeImplies isect_memberEquality_alt axiomEquality dependent_set_memberEquality_alt setIsType functionIsType isectIsType equalitySymmetry equalityTransitivity universeIsType lambdaEquality_alt independent_isectElimination because_Cache natural_numberEquality hypothesisEquality setEquality isectEquality functionEquality isectElimination sqequalHypSubstitution hypothesis extract_by_obid instantiate applyEquality sqequalRule rename thin setElimination cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:\{K:n-dim-complex|  0  <  ||K||\}  ].    (rccp-compact(k;K)  \mmember{}  mcompact(|K|;rn-prod-metric(k)))



Date html generated: 2019_10_31-AM-06_04_09
Last ObjectModification: 2019_10_30-PM-04_16_51

Theory : real!vectors


Home Index