Nuprl Lemma : rccp-compact_wf
∀[k,n:ℕ]. ∀[K:{K:n-dim-complex| 0 < ||K||} ].  (rccp-compact(k;K) ∈ mcompact(|K|;rn-prod-metric(k)))
Proof
Definitions occuring in Statement : 
rccp-compact: rccp-compact(k;K)
, 
rat-cube-complex-polyhedron: |K|
, 
rn-prod-metric: rn-prod-metric(n)
, 
mcompact: mcompact(X;d)
, 
length: ||as||
, 
nat: ℕ
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
rational-cube-complex: n-dim-complex
Definitions unfolded in proof : 
rat-cube-complex-polyhedron: |K|
, 
uimplies: b supposing a
, 
prop: ℙ
, 
rational-cube-complex: n-dim-complex
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
rccp-compact: rccp-compact(k;K)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
istype-less_than, 
real-vec_wf, 
metric-on-subtype, 
rn-prod-metric_wf, 
rat-cube-complex-polyhedron_wf, 
mcompact_wf, 
rational-cube_wf, 
length_wf, 
less_than_wf, 
rational-cube-complex_wf, 
nat_wf, 
subtype_rel_self, 
rat-cube-complex-polyhedron-compact
Rules used in proof : 
inhabitedIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
axiomEquality, 
dependent_set_memberEquality_alt, 
setIsType, 
functionIsType, 
isectIsType, 
equalitySymmetry, 
equalityTransitivity, 
universeIsType, 
lambdaEquality_alt, 
independent_isectElimination, 
because_Cache, 
natural_numberEquality, 
hypothesisEquality, 
setEquality, 
isectEquality, 
functionEquality, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
instantiate, 
applyEquality, 
sqequalRule, 
rename, 
thin, 
setElimination, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:\{K:n-dim-complex|  0  <  ||K||\}  ].    (rccp-compact(k;K)  \mmember{}  mcompact(|K|;rn-prod-metric(k)))
Date html generated:
2019_10_31-AM-06_04_09
Last ObjectModification:
2019_10_30-PM-04_16_51
Theory : real!vectors
Home
Index