Nuprl Lemma : rat-cube-complex-polyhedron-compact

k:ℕ. ∀[n:ℕ]. ∀K:{K:n-dim-complex| 0 < ||K||} mcompact(|K|;rn-prod-metric(k))


Proof




Definitions occuring in Statement :  rat-cube-complex-polyhedron: |K| rn-prod-metric: rn-prod-metric(n) mcompact: mcompact(X;d) length: ||as|| nat: less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  natural_number: $n rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  bfalse: ff btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) guard: {T} sq_type: SQType(T) top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: squash: T less_than: a < b le: A ≤ B lelt: i ≤ j < k uimplies: supposing a int_seg: {i..j-} rat-cube-dimension: dim(c) l_all: (∀x∈L.P[x]) and: P ∧ Q sq_stable: SqStable(P) implies:  Q so_apply: x[s] prop: so_lambda: λ2x.t[x] member: t ∈ T rational-cube-complex: n-dim-complex uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  istype-nat istype-less_than rational-cube-complex_wf rat-cube-complex-polyhedron-compact1 int_seg_wf int_formula_prop_eq_lemma intformeq_wf assert_of_bnot eqff_to_assert eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases int_formula_prop_less_lemma intformless_wf istype-le length_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties select_wf assert_witness sq_stable__assert l_member_wf inhabited-rat-cube_wf assert_wf rational-cube_wf sq_stable__l_all
Rules used in proof :  baseClosed imageMemberEquality minusEquality equalitySymmetry equalityTransitivity cumulativity instantiate dependent_set_memberEquality_alt independent_pairFormation voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt approximateComputation unionElimination natural_numberEquality imageElimination independent_isectElimination productElimination inhabitedIsType functionIsTypeImplies dependent_functionElimination independent_functionElimination because_Cache universeIsType setIsType lambdaEquality_alt sqequalRule hypothesis hypothesisEquality isectElimination extract_by_obid introduction sqequalHypSubstitution rename thin setElimination cut isect_memberFormation_alt lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}[n:\mBbbN{}].  \mforall{}K:\{K:n-dim-complex|  0  <  ||K||\}  .  mcompact(|K|;rn-prod-metric(k))



Date html generated: 2019_10_31-AM-06_04_02
Last ObjectModification: 2019_10_30-PM-04_14_39

Theory : real!vectors


Home Index