Nuprl Lemma : rat-cube-complex-polyhedron-compact
∀k:ℕ. ∀[n:ℕ]. ∀K:{K:n-dim-complex| 0 < ||K||} . mcompact(|K|;rn-prod-metric(k))
Proof
Definitions occuring in Statement : 
rat-cube-complex-polyhedron: |K|, 
rn-prod-metric: rn-prod-metric(n), 
mcompact: mcompact(X;d), 
length: ||as||, 
nat: ℕ, 
less_than: a < b, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
set: {x:A| B[x]} , 
natural_number: $n, 
rational-cube-complex: n-dim-complex
Definitions unfolded in proof : 
bfalse: ff, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
guard: {T}, 
sq_type: SQType(T), 
top: Top, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
or: P ∨ Q, 
decidable: Dec(P), 
ge: i ≥ j , 
nat: ℕ, 
squash: ↓T, 
less_than: a < b, 
le: A ≤ B, 
lelt: i ≤ j < k, 
uimplies: b supposing a, 
int_seg: {i..j-}, 
rat-cube-dimension: dim(c), 
l_all: (∀x∈L.P[x]), 
and: P ∧ Q, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
so_apply: x[s], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
rational-cube-complex: n-dim-complex, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x]
Lemmas referenced : 
istype-nat, 
istype-less_than, 
rational-cube-complex_wf, 
rat-cube-complex-polyhedron-compact1, 
int_seg_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
assert_of_bnot, 
eqff_to_assert, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
int_formula_prop_less_lemma, 
intformless_wf, 
istype-le, 
length_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
select_wf, 
assert_witness, 
sq_stable__assert, 
l_member_wf, 
inhabited-rat-cube_wf, 
assert_wf, 
rational-cube_wf, 
sq_stable__l_all
Rules used in proof : 
baseClosed, 
imageMemberEquality, 
minusEquality, 
equalitySymmetry, 
equalityTransitivity, 
cumulativity, 
instantiate, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
unionElimination, 
natural_numberEquality, 
imageElimination, 
independent_isectElimination, 
productElimination, 
inhabitedIsType, 
functionIsTypeImplies, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
universeIsType, 
setIsType, 
lambdaEquality_alt, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
sqequalHypSubstitution, 
rename, 
thin, 
setElimination, 
cut, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}[n:\mBbbN{}].  \mforall{}K:\{K:n-dim-complex|  0  <  ||K||\}  .  mcompact(|K|;rn-prod-metric(k))
Date html generated:
2019_10_31-AM-06_04_02
Last ObjectModification:
2019_10_30-PM-04_14_39
Theory : real!vectors
Home
Index