Nuprl Lemma : real-ball-coordinate-range

[r:{r:ℝr0 ≤ r} ]. ∀[n:ℕ]. ∀[i:ℕn]. ∀[x:B(n;r)].  (x i ∈ [-(r), r])


Proof




Definitions occuring in Statement :  real-ball: B(n;r) rccint: [l, u] i-member: r ∈ I rleq: x ≤ y rminus: -(x) int-to-real: r(n) real: int_seg: {i..j-} nat: uall: [x:A]. B[x] set: {x:A| B[x]}  apply: a natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T top: Top real-ball: B(n;r) real-vec: ^n prop: implies:  Q sq_stable: SqStable(P) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q uimplies: supposing a squash: T nat: rge: x ≥ y guard: {T} iff: ⇐⇒ Q
Lemmas referenced :  member_rccint_lemma istype-void sq_stable__and rleq_wf rminus_wf sq_stable__rleq le_witness_for_triv sq_stable__i-member rccint_wf real-ball_wf int_seg_wf istype-nat real_wf int-to-real_wf component-rleq-real-vec-norm rabs_wf real-vec-norm_wf rleq_functionality_wrt_implies rleq_weakening_equal rabs-rleq-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality_alt voidElimination hypothesis isectElimination setElimination rename because_Cache applyEquality hypothesisEquality universeIsType independent_functionElimination lambdaFormation_alt lambdaEquality_alt productElimination equalityTransitivity equalitySymmetry independent_isectElimination functionIsTypeImplies inhabitedIsType imageMemberEquality baseClosed imageElimination natural_numberEquality setIsType

Latex:
\mforall{}[r:\{r:\mBbbR{}|  r0  \mleq{}  r\}  ].  \mforall{}[n:\mBbbN{}].  \mforall{}[i:\mBbbN{}n].  \mforall{}[x:B(n;r)].    (x  i  \mmember{}  [-(r),  r])



Date html generated: 2019_10_30-AM-10_14_53
Last ObjectModification: 2019_06_28-PM-01_52_11

Theory : real!vectors


Home Index