Nuprl Lemma : std-simplex-properties

[n:ℕ]. ∀[v:Δ(n)].  ((∀i:ℕ1. (r0 ≤ (v i))) ∧ {v 0≤i≤n} r1))


Proof




Definitions occuring in Statement :  std-simplex: Δ(n) rsum: Σ{x[k] n≤k≤m} rleq: x ≤ y req: y int-to-real: r(n) int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q apply: a add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B all: x:A. B[x] std-simplex: Δ(n) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B real-vec: ^n sq_stable: SqStable(P) implies:  Q squash: T nat: so_lambda: λ2x.t[x] so_apply: x[s] rleq: x ≤ y rnonneg: rnonneg(x) uimplies: supposing a guard: {T}
Lemmas referenced :  sq_stable__rleq int-to-real_wf int_seg_wf sq_stable__req rsum_wf le_witness_for_triv req_witness std-simplex_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution setElimination thin rename extract_by_obid isectElimination productElimination hypothesis applyEquality hypothesisEquality independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination universeIsType natural_numberEquality addEquality independent_pairFormation lambdaEquality_alt independent_pairEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_isectElimination functionIsTypeImplies inhabitedIsType because_Cache isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[v:\mDelta{}(n)].    ((\mforall{}i:\mBbbN{}n  +  1.  (r0  \mleq{}  (v  i)))  \mwedge{}  (\mSigma{}\{v  i  |  0\mleq{}i\mleq{}n\}  =  r1))



Date html generated: 2019_10_30-AM-11_30_32
Last ObjectModification: 2019_07_31-AM-11_45_49

Theory : real!vectors


Home Index