Nuprl Lemma : std-simplex-properties
∀[n:ℕ]. ∀[v:Δ(n)].  ((∀i:ℕn + 1. (r0 ≤ (v i))) ∧ (Σ{v i | 0≤i≤n} = r1))
Proof
Definitions occuring in Statement : 
std-simplex: Δ(n)
, 
rsum: Σ{x[k] | n≤k≤m}
, 
rleq: x ≤ y
, 
req: x = y
, 
int-to-real: r(n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
std-simplex: Δ(n)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
real-vec: ℝ^n
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
sq_stable__rleq, 
int-to-real_wf, 
int_seg_wf, 
sq_stable__req, 
rsum_wf, 
le_witness_for_triv, 
req_witness, 
std-simplex_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
isectElimination, 
productElimination, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
universeIsType, 
natural_numberEquality, 
addEquality, 
independent_pairFormation, 
lambdaEquality_alt, 
independent_pairEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[v:\mDelta{}(n)].    ((\mforall{}i:\mBbbN{}n  +  1.  (r0  \mleq{}  (v  i)))  \mwedge{}  (\mSigma{}\{v  i  |  0\mleq{}i\mleq{}n\}  =  r1))
Date html generated:
2019_10_30-AM-11_30_32
Last ObjectModification:
2019_07_31-AM-11_45_49
Theory : real!vectors
Home
Index