Step
*
1
1
1
1
of Lemma
Cauchy-Schwarz-equality
1. n : ℕ
2. x : ℝ^n
3. y : ℝ^n
4. r0 < ||y||
5. |x⋅y| = (||x|| * ||y||)
6. r0 < ||y||^2
7. ∀i,j:ℕn. (((x j) * (y i)) = ((x i) * (y j)))
8. i : ℕn
9. j : ℕn
10. r0 ≠ y j
11. ((x j) * (y i)) = ((x i) * (y j))
12. y j ≠ r0
13. (x i) = ((x j/y j) * (y i))
⊢ (x j/y j) = (x⋅y/||y||^2)
BY
{ (nRMul ⌜||y||^2⌝ 0⋅ THEN nRMul ⌜y j⌝ 0⋅ THEN (RWO "real-vec-norm-squared" 0 THENA Auto)) }
1
1. n : ℕ
2. x : ℝ^n
3. y : ℝ^n
4. r0 < ||y||
5. |x⋅y| = (||x|| * ||y||)
6. r0 < ||y||^2
7. ∀i,j:ℕn. (((x j) * (y i)) = ((x i) * (y j)))
8. i : ℕn
9. j : ℕn
10. r0 ≠ y j
11. ((x j) * (y i)) = ((x i) * (y j))
12. y j ≠ r0
13. (x i) = ((x j/y j) * (y i))
⊢ ((x j) * y⋅y) = ((y j) * x⋅y)
Latex:
Latex:
1. n : \mBbbN{}
2. x : \mBbbR{}\^{}n
3. y : \mBbbR{}\^{}n
4. r0 < ||y||
5. |x\mcdot{}y| = (||x|| * ||y||)
6. r0 < ||y||\^{}2
7. \mforall{}i,j:\mBbbN{}n. (((x j) * (y i)) = ((x i) * (y j)))
8. i : \mBbbN{}n
9. j : \mBbbN{}n
10. r0 \mneq{} y j
11. ((x j) * (y i)) = ((x i) * (y j))
12. y j \mneq{} r0
13. (x i) = ((x j/y j) * (y i))
\mvdash{} (x j/y j) = (x\mcdot{}y/||y||\^{}2)
By
Latex:
(nRMul \mkleeneopen{}||y||\^{}2\mkleeneclose{} 0\mcdot{} THEN nRMul \mkleeneopen{}y j\mkleeneclose{} 0\mcdot{} THEN (RWO "real-vec-norm-squared" 0 THENA Auto))
Home
Index