Step
*
2
1
1
of Lemma
Taylor-theorem-case2
1. I : Interval
2. iproper(I)
3. n : ℕ+
4. F : ℕn + 2 ⟶ I ⟶ℝ
5. a : {a:ℝ| a ∈ I}
6. b : {a:ℝ| a ∈ I}
7. ∀k:ℕn + 2. ∀x,y:{a:ℝ| a ∈ I} . ((x = y)
⇒ (F[k;x] = F[k;y]))
8. finite-deriv-seq(I;n + 1;i,x.F[i;x])
9. e : ℝ
10. r0 < e
11. M : ℕ+
12. ∀k:ℕ+n + 1. (|(F[k;a]/r((k)!))| ≤ r(M))
13. k : ℕ+
14. (r1/r(k)) < e
15. [rmin(a;b), rmax(a;b)] ⊆ I
16. ∀n:ℕ+
(∃d:ℝ [((r0 < d)
∧ (∀x,y:ℝ.
((x ∈ i-approx([rmin(a;b), rmax(a;b)];1))
⇒ (y ∈ i-approx([rmin(a;b), rmax(a;b)];1))
⇒ (|x - y| ≤ d)
⇒ (|F[0;x] - F[0;y]| ≤ (r1/r(n))))))])
⊢ ∃d:ℝ. ((r0 < d) ∧ ((|a - b| < d)
⇒ (|Taylor-remainder(I;n;b;a;k,x.F[k;x])| ≤ e)))
BY
{ ((With ⌜2 * k⌝ (D (-1))⋅ THENA Auto) THEN ExRepD THEN RepUR ``i-approx`` (-1)) }
1
1. I : Interval
2. iproper(I)
3. n : ℕ+
4. F : ℕn + 2 ⟶ I ⟶ℝ
5. a : {a:ℝ| a ∈ I}
6. b : {a:ℝ| a ∈ I}
7. ∀k:ℕn + 2. ∀x,y:{a:ℝ| a ∈ I} . ((x = y)
⇒ (F[k;x] = F[k;y]))
8. finite-deriv-seq(I;n + 1;i,x.F[i;x])
9. e : ℝ
10. r0 < e
11. M : ℕ+
12. ∀k:ℕ+n + 1. (|(F[k;a]/r((k)!))| ≤ r(M))
13. k : ℕ+
14. (r1/r(k)) < e
15. [rmin(a;b), rmax(a;b)] ⊆ I
16. d : ℝ
17. r0 < d
18. ∀x,y:ℝ.
(((rmin(a;b) ≤ x) ∧ (x ≤ rmax(a;b)))
⇒ ((rmin(a;b) ≤ y) ∧ (y ≤ rmax(a;b)))
⇒ (|x - y| ≤ d)
⇒ (|F[0;x] - F[0;y]| ≤ (r1/r(2 * k))))
⊢ ∃d:ℝ. ((r0 < d) ∧ ((|a - b| < d)
⇒ (|Taylor-remainder(I;n;b;a;k,x.F[k;x])| ≤ e)))
Latex:
Latex:
1. I : Interval
2. iproper(I)
3. n : \mBbbN{}\msupplus{}
4. F : \mBbbN{}n + 2 {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}
5. a : \{a:\mBbbR{}| a \mmember{} I\}
6. b : \{a:\mBbbR{}| a \mmember{} I\}
7. \mforall{}k:\mBbbN{}n + 2. \mforall{}x,y:\{a:\mBbbR{}| a \mmember{} I\} . ((x = y) {}\mRightarrow{} (F[k;x] = F[k;y]))
8. finite-deriv-seq(I;n + 1;i,x.F[i;x])
9. e : \mBbbR{}
10. r0 < e
11. M : \mBbbN{}\msupplus{}
12. \mforall{}k:\mBbbN{}\msupplus{}n + 1. (|(F[k;a]/r((k)!))| \mleq{} r(M))
13. k : \mBbbN{}\msupplus{}
14. (r1/r(k)) < e
15. [rmin(a;b), rmax(a;b)] \msubseteq{} I
16. \mforall{}n:\mBbbN{}\msupplus{}
(\mexists{}d:\mBbbR{} [((r0 < d)
\mwedge{} (\mforall{}x,y:\mBbbR{}.
((x \mmember{} i-approx([rmin(a;b), rmax(a;b)];1))
{}\mRightarrow{} (y \mmember{} i-approx([rmin(a;b), rmax(a;b)];1))
{}\mRightarrow{} (|x - y| \mleq{} d)
{}\mRightarrow{} (|F[0;x] - F[0;y]| \mleq{} (r1/r(n))))))])
\mvdash{} \mexists{}d:\mBbbR{}. ((r0 < d) \mwedge{} ((|a - b| < d) {}\mRightarrow{} (|Taylor-remainder(I;n;b;a;k,x.F[k;x])| \mleq{} e)))
By
Latex:
((With \mkleeneopen{}2 * k\mkleeneclose{} (D (-1))\mcdot{} THENA Auto) THEN ExRepD THEN RepUR ``i-approx`` (-1))
Home
Index