Step
*
1
1
1
1
of Lemma
approx-arg_wf
.....assertion.....
1. f : (-∞, ∞) ⟶ℝ
2. f' : (-∞, ∞) ⟶ℝ
3. ∀x,y:ℝ. ((x = y)
⇒ (f'[x] = f'[y]))
4. d(f[x])/dx = λx.f'[x] on (-∞, ∞)
5. B : ℕ
6. ∀x:ℝ. (|f'[x]| ≤ r(B))
7. x : ℝ
8. ∀x,y:{x:ℝ| x ∈ (-∞, ∞)} . (|f[x] - f[y]| ≤ (r(B) * |x - y|))
9. n : ℕ+
10. m : ℕ+
11. v : ℝ
12. (x within 1/n) = v ∈ ℝ
13. v1 : ℝ
14. (x within 1/m) = v1 ∈ ℝ
15. |f[v] - f[v1]| ≤ (r(B) * |v - v1|)
16. |x - v| ≤ (r1/r(n))
17. |x - v1| ≤ (r1/r(m))
⊢ |(r(2 * n * m) * (f v)) - r(m * (f v n))| ≤ r(2 * m)
BY
{ ((InstLemma `rational-approx-property` [⌜f v⌝;⌜n⌝]⋅ THENA Auto)
THEN Unfold `rational-approx` -1
THEN nRMul ⌜r(n)⌝ (-1)⋅
THEN nRMul ⌜r(2)⌝ (-1)⋅
THEN (RWO "int-rdiv-req" (-1) THENA Auto)
THEN (RWO "rmul-assoc" (-1) THENA Auto)
THEN (RWO "rmul-int" (-1) THENA Auto)) }
1
1. f : (-∞, ∞) ⟶ℝ
2. f' : (-∞, ∞) ⟶ℝ
3. ∀x,y:ℝ. ((x = y)
⇒ (f'[x] = f'[y]))
4. d(f[x])/dx = λx.f'[x] on (-∞, ∞)
5. B : ℕ
6. ∀x:ℝ. (|f'[x]| ≤ r(B))
7. x : ℝ
8. ∀x,y:{x:ℝ| x ∈ (-∞, ∞)} . (|f[x] - f[y]| ≤ (r(B) * |x - y|))
9. n : ℕ+
10. m : ℕ+
11. v : ℝ
12. (x within 1/n) = v ∈ ℝ
13. v1 : ℝ
14. (x within 1/m) = v1 ∈ ℝ
15. |f[v] - f[v1]| ≤ (r(B) * |v - v1|)
16. |x - v| ≤ (r1/r(n))
17. |x - v1| ≤ (r1/r(m))
18. (r(2 * n) * |(f v) + -((r(f v n)/r(2 * n)))|) ≤ r(2)
⊢ |(r(2 * n * m) * (f v)) - r(m * (f v n))| ≤ r(2 * m)
Latex:
Latex:
.....assertion.....
1. f : (-\minfty{}, \minfty{}) {}\mrightarrow{}\mBbbR{}
2. f' : (-\minfty{}, \minfty{}) {}\mrightarrow{}\mBbbR{}
3. \mforall{}x,y:\mBbbR{}. ((x = y) {}\mRightarrow{} (f'[x] = f'[y]))
4. d(f[x])/dx = \mlambda{}x.f'[x] on (-\minfty{}, \minfty{})
5. B : \mBbbN{}
6. \mforall{}x:\mBbbR{}. (|f'[x]| \mleq{} r(B))
7. x : \mBbbR{}
8. \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} (-\minfty{}, \minfty{})\} . (|f[x] - f[y]| \mleq{} (r(B) * |x - y|))
9. n : \mBbbN{}\msupplus{}
10. m : \mBbbN{}\msupplus{}
11. v : \mBbbR{}
12. (x within 1/n) = v
13. v1 : \mBbbR{}
14. (x within 1/m) = v1
15. |f[v] - f[v1]| \mleq{} (r(B) * |v - v1|)
16. |x - v| \mleq{} (r1/r(n))
17. |x - v1| \mleq{} (r1/r(m))
\mvdash{} |(r(2 * n * m) * (f v)) - r(m * (f v n))| \mleq{} r(2 * m)
By
Latex:
((InstLemma `rational-approx-property` [\mkleeneopen{}f v\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{}]\mcdot{} THENA Auto)
THEN Unfold `rational-approx` -1
THEN nRMul \mkleeneopen{}r(n)\mkleeneclose{} (-1)\mcdot{}
THEN nRMul \mkleeneopen{}r(2)\mkleeneclose{} (-1)\mcdot{}
THEN (RWO "int-rdiv-req" (-1) THENA Auto)
THEN (RWO "rmul-assoc" (-1) THENA Auto)
THEN (RWO "rmul-int" (-1) THENA Auto))
Home
Index