Nuprl Lemma : avoid-reals-simple
∀L:ℝ List. ∀a,b:ℝ. ((a < b)
⇒ (∃c:ℝ. ((a ≤ c) ∧ (c < b) ∧ (∀x∈L.c ≠ x))))
Proof
Definitions occuring in Statement :
rneq: x ≠ y
,
rleq: x ≤ y
,
rless: x < y
,
real: ℝ
,
l_all: (∀x∈L.P[x])
,
list: T List
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
and: P ∧ Q
,
cand: A c∧ B
,
guard: {T}
,
uimplies: b supposing a
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
l_all: (∀x∈L.P[x])
,
rneq: x ≠ y
,
or: P ∨ Q
,
int_seg: {i..j-}
,
rless: x < y
,
sq_exists: ∃x:{A| B[x]}
,
nat_plus: ℕ+
,
lelt: i ≤ j < k
,
sq_stable: SqStable(P)
,
squash: ↓T
,
real: ℝ
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
not: ¬A
,
top: Top
,
less_than: a < b
,
subtype_rel: A ⊆r B
Lemmas referenced :
avoid-reals,
rless_transitivity1,
rleq_wf,
rless_wf,
l_all_wf2,
real_wf,
rneq_wf,
l_member_wf,
list_wf,
select_wf,
sq_stable__less_than,
nat_plus_properties,
int_seg_properties,
length_wf,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
rless_transitivity2,
rleq_weakening_rless,
int_seg_wf
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
hypothesis,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
independent_functionElimination,
productElimination,
dependent_pairFormation,
independent_pairFormation,
independent_isectElimination,
productEquality,
isectElimination,
sqequalRule,
lambdaEquality,
setElimination,
rename,
setEquality,
unionElimination,
inrFormation,
because_Cache,
addEquality,
applyEquality,
natural_numberEquality,
imageMemberEquality,
baseClosed,
imageElimination,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
computeAll,
inlFormation
Latex:
\mforall{}L:\mBbbR{} List. \mforall{}a,b:\mBbbR{}. ((a < b) {}\mRightarrow{} (\mexists{}c:\mBbbR{}. ((a \mleq{} c) \mwedge{} (c < b) \mwedge{} (\mforall{}x\mmember{}L.c \mneq{} x))))
Date html generated:
2016_10_26-AM-09_33_51
Last ObjectModification:
2016_08_14-PM-00_51_52
Theory : reals
Home
Index