Nuprl Lemma : avoid-reals-simple

L:ℝ List. ∀a,b:ℝ.  ((a < b)  (∃c:ℝ((a ≤ c) ∧ (c < b) ∧ (∀x∈L.c ≠ x))))


Proof




Definitions occuring in Statement :  rneq: x ≠ y rleq: x ≤ y rless: x < y real: l_all: (∀x∈L.P[x]) list: List all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q exists: x:A. B[x] and: P ∧ Q cand: c∧ B guard: {T} uimplies: supposing a prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] l_all: (∀x∈L.P[x]) rneq: x ≠ y or: P ∨ Q int_seg: {i..j-} rless: x < y sq_exists: x:{A| B[x]} nat_plus: + lelt: i ≤ j < k sq_stable: SqStable(P) squash: T real: decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top less_than: a < b subtype_rel: A ⊆B
Lemmas referenced :  avoid-reals rless_transitivity1 rleq_wf rless_wf l_all_wf2 real_wf rneq_wf l_member_wf list_wf select_wf sq_stable__less_than nat_plus_properties int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma rless_transitivity2 rleq_weakening_rless int_seg_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination productElimination dependent_pairFormation independent_pairFormation independent_isectElimination productEquality isectElimination sqequalRule lambdaEquality setElimination rename setEquality unionElimination inrFormation because_Cache addEquality applyEquality natural_numberEquality imageMemberEquality baseClosed imageElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll inlFormation

Latex:
\mforall{}L:\mBbbR{}  List.  \mforall{}a,b:\mBbbR{}.    ((a  <  b)  {}\mRightarrow{}  (\mexists{}c:\mBbbR{}.  ((a  \mleq{}  c)  \mwedge{}  (c  <  b)  \mwedge{}  (\mforall{}x\mmember{}L.c  \mneq{}  x))))



Date html generated: 2016_10_26-AM-09_33_51
Last ObjectModification: 2016_08_14-PM-00_51_52

Theory : reals


Home Index