Nuprl Lemma : cantor-interval-converges

a,b:ℝ.  ∀f:ℕ ⟶ 𝔹fst(cantor-interval(a;b;f;n))↓ as n→∞ supposing a ≤ b


Proof




Definitions occuring in Statement :  cantor-interval: cantor-interval(a;b;f;n) converges: x[n]↓ as n→∞ rleq: x ≤ y real: nat: bool: 𝔹 uimplies: supposing a pi1: fst(t) all: x:A. B[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False uall: [x:A]. B[x] subtype_rel: A ⊆B real: prop: so_lambda: λ2x.t[x] so_apply: x[s] nat: less_than': less_than'(a;b) top: Top iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  less_than'_wf rsub_wf real_wf nat_plus_wf converges-iff-cauchy cantor-interval_wf subtype_rel_dep_function nat_wf bool_wf int_seg_wf int_seg_subtype_nat false_wf subtype_rel_self pi1_wf_top equal_wf cantor-interval-cauchy-ext rleq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality voidElimination extract_by_obid isectElimination applyEquality hypothesis setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache independent_isectElimination independent_pairFormation productEquality isect_memberEquality voidEquality independent_functionElimination functionEquality

Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  fst(cantor-interval(a;b;f;n))\mdownarrow{}  as  n\mrightarrow{}\minfty{}  supposing  a  \mleq{}  b



Date html generated: 2017_10_03-AM-09_52_38
Last ObjectModification: 2017_07_28-AM-08_02_27

Theory : reals


Home Index