Nuprl Lemma : cantor-interval-cauchy-ext
∀a,b:ℝ.  ∀[f:ℕ ⟶ 𝔹]. cauchy(n.fst(cantor-interval(a;b;f;n))) supposing a ≤ b
Proof
Definitions occuring in Statement : 
cantor-interval: cantor-interval(a;b;f;n)
, 
cauchy: cauchy(n.x[n])
, 
rleq: x ≤ y
, 
real: ℝ
, 
nat: ℕ
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member: t ∈ T
, 
rsub: x - y
, 
radd: a + b
, 
accelerate: accelerate(k;f)
, 
reg-seq-list-add: reg-seq-list-add(L)
, 
cons: [a / b]
, 
rminus: -(x)
, 
nil: []
, 
it: ⋅
, 
canonical-bound: canonical-bound(r)
, 
absval: |i|
, 
cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L)
, 
cantor_cauchy: cantor_cauchy(a;b;k)
, 
cantor-interval-cauchy, 
r-archimedean, 
decidable__equal_int, 
canonical-bound-property, 
decidable__int_equal, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
or: P ∨ Q
, 
squash: ↓T
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
not: ¬A
, 
false: False
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
cantor-interval-cauchy, 
lifting-strict-int_eq, 
istype-void, 
strict4-decide, 
lifting-strict-callbyvalue, 
value-type-has-value, 
int-value-type, 
has-value_wf_base, 
istype-base, 
is-exception_wf, 
istype-universe, 
strict4-divide, 
cbv_sqequal, 
lifting-strict-less, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
istype-less_than, 
r-archimedean, 
decidable__equal_int, 
canonical-bound-property, 
decidable__int_equal
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation_alt, 
callbyvalueAdd, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
productElimination, 
intEquality, 
universeIsType, 
addExceptionCases, 
exceptionSqequal, 
inrFormation_alt, 
imageMemberEquality, 
imageElimination, 
inlFormation_alt, 
because_Cache, 
callbyvalueIntEq, 
int_eqExceptionCases, 
callbyvalueReduce, 
sqequalSqle, 
divergentSqle, 
callbyvalueLess, 
inhabitedIsType, 
unionElimination, 
equalityElimination, 
lessCases, 
isect_memberFormation_alt, 
axiomSqEquality, 
isectIsTypeImplies, 
natural_numberEquality, 
independent_functionElimination, 
sqleReflexivity, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
dependent_functionElimination, 
cumulativity, 
lessExceptionCases, 
axiomSqleEquality, 
exceptionLess
Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  cauchy(n.fst(cantor-interval(a;b;f;n)))  supposing  a  \mleq{}  b
Date html generated:
2019_10_30-AM-07_38_56
Last ObjectModification:
2019_04_02-AM-10_56_00
Theory : reals
Home
Index