Nuprl Lemma : cantor-interval-cauchy-ext

a,b:ℝ.  ∀[f:ℕ ⟶ 𝔹]. cauchy(n.fst(cantor-interval(a;b;f;n))) supposing a ≤ b


Proof




Definitions occuring in Statement :  cantor-interval: cantor-interval(a;b;f;n) cauchy: cauchy(n.x[n]) rleq: x ≤ y real: nat: bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) all: x:A. B[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T rsub: y radd: b accelerate: accelerate(k;f) reg-seq-list-add: reg-seq-list-add(L) cons: [a b] rminus: -(x) nil: [] it: canonical-bound: canonical-bound(r) absval: |i| cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L) cantor_cauchy: cantor_cauchy(a;b;k) cantor-interval-cauchy r-archimedean decidable__equal_int canonical-bound-property decidable__int_equal uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: or: P ∨ Q squash: T bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) true: True not: ¬A false: False bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  cantor-interval-cauchy lifting-strict-int_eq istype-void strict4-decide lifting-strict-callbyvalue value-type-has-value int-value-type has-value_wf_base istype-base is-exception_wf istype-universe strict4-divide cbv_sqequal lifting-strict-less lt_int_wf eqtt_to_assert assert_of_lt_int istype-top eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than r-archimedean decidable__equal_int canonical-bound-property decidable__int_equal
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination independent_pairFormation lambdaFormation_alt callbyvalueAdd baseApply closedConclusion hypothesisEquality productElimination intEquality universeIsType addExceptionCases exceptionSqequal inrFormation_alt imageMemberEquality imageElimination inlFormation_alt because_Cache callbyvalueIntEq int_eqExceptionCases callbyvalueReduce sqequalSqle divergentSqle callbyvalueLess inhabitedIsType unionElimination equalityElimination lessCases isect_memberFormation_alt axiomSqEquality isectIsTypeImplies natural_numberEquality independent_functionElimination sqleReflexivity dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination cumulativity lessExceptionCases axiomSqleEquality exceptionLess

Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  cauchy(n.fst(cantor-interval(a;b;f;n)))  supposing  a  \mleq{}  b



Date html generated: 2019_10_30-AM-07_38_56
Last ObjectModification: 2019_04_02-AM-10_56_00

Theory : reals


Home Index