Nuprl Lemma : case-real3-req2

[f:ℕ+ ⟶ 𝔹]. ∀[b:ℝ]. ∀[a:Top].  (case-real3(a;b;f) b) supposing ∀n:ℕ+(¬↑(f n))


Proof




Definitions occuring in Statement :  case-real3: case-real3(a;b;f) req: y real: nat_plus: + assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] not: ¬A apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a case-real3: case-real3(a;b;f) real: member: t ∈ T nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] case-real3-seq: case-real3-seq(a;b;f) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  real-regular decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than regular-int-seq_wf accelerate-req req_wf accelerate_wf subtype_rel_sets_simple nat_plus_wf istype-top real_wf istype-assert bool_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut equalitySymmetry dependent_set_memberEquality_alt introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality dependent_functionElimination hypothesis unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt voidElimination sqequalRule universeIsType because_Cache productElimination hyp_replacement applyLambdaEquality applyEquality functionEquality intEquality functionIsType lambdaFormation_alt functionExtensionality inhabitedIsType equalityElimination equalityTransitivity equalityIstype promote_hyp instantiate cumulativity setElimination rename

Latex:
\mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[b:\mBbbR{}].  \mforall{}[a:Top].    (case-real3(a;b;f)  =  b)  supposing  \mforall{}n:\mBbbN{}\msupplus{}.  (\mneg{}\muparrow{}(f  n))



Date html generated: 2019_10_29-AM-09_38_02
Last ObjectModification: 2019_06_14-PM-03_28_18

Theory : reals


Home Index