Nuprl Lemma : case-real3-req2
∀[f:ℕ+ ⟶ 𝔹]. ∀[b:ℝ]. ∀[a:Top]. (case-real3(a;b;f) = b) supposing ∀n:ℕ+. (¬↑(f n))
Proof
Definitions occuring in Statement :
case-real3: case-real3(a;b;f)
,
req: x = y
,
real: ℝ
,
nat_plus: ℕ+
,
assert: ↑b
,
bool: 𝔹
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
all: ∀x:A. B[x]
,
not: ¬A
,
apply: f a
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
case-real3: case-real3(a;b;f)
,
real: ℝ
,
member: t ∈ T
,
nat_plus: ℕ+
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
prop: ℙ
,
false: False
,
and: P ∧ Q
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
case-real3-seq: case-real3-seq(a;b;f)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
Lemmas referenced :
real-regular,
decidable__lt,
full-omega-unsat,
intformnot_wf,
intformless_wf,
itermConstant_wf,
istype-int,
int_formula_prop_not_lemma,
istype-void,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
istype-less_than,
regular-int-seq_wf,
accelerate-req,
req_wf,
accelerate_wf,
subtype_rel_sets_simple,
nat_plus_wf,
istype-top,
real_wf,
istype-assert,
bool_wf,
eqtt_to_assert,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
cut,
equalitySymmetry,
dependent_set_memberEquality_alt,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
natural_numberEquality,
dependent_functionElimination,
hypothesis,
unionElimination,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
lambdaEquality_alt,
isect_memberEquality_alt,
voidElimination,
sqequalRule,
universeIsType,
because_Cache,
productElimination,
hyp_replacement,
applyLambdaEquality,
applyEquality,
functionEquality,
intEquality,
functionIsType,
lambdaFormation_alt,
functionExtensionality,
inhabitedIsType,
equalityElimination,
equalityTransitivity,
equalityIstype,
promote_hyp,
instantiate,
cumulativity,
setElimination,
rename
Latex:
\mforall{}[f:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbB{}]. \mforall{}[b:\mBbbR{}]. \mforall{}[a:Top]. (case-real3(a;b;f) = b) supposing \mforall{}n:\mBbbN{}\msupplus{}. (\mneg{}\muparrow{}(f n))
Date html generated:
2019_10_29-AM-09_38_02
Last ObjectModification:
2019_06_14-PM-03_28_18
Theory : reals
Home
Index