Nuprl Lemma : case-real3-req2
∀[f:ℕ+ ⟶ 𝔹]. ∀[b:ℝ]. ∀[a:Top].  (case-real3(a;b;f) = b) supposing ∀n:ℕ+. (¬↑(f n))
Proof
Definitions occuring in Statement : 
case-real3: case-real3(a;b;f), 
req: x = y, 
real: ℝ, 
nat_plus: ℕ+, 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
all: ∀x:A. B[x], 
not: ¬A, 
apply: f a, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
case-real3: case-real3(a;b;f), 
real: ℝ, 
member: t ∈ T, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
prop: ℙ, 
false: False, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
case-real3-seq: case-real3-seq(a;b;f), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
real-regular, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
regular-int-seq_wf, 
accelerate-req, 
req_wf, 
accelerate_wf, 
subtype_rel_sets_simple, 
nat_plus_wf, 
istype-top, 
real_wf, 
istype-assert, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
dependent_functionElimination, 
hypothesis, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
universeIsType, 
because_Cache, 
productElimination, 
hyp_replacement, 
applyLambdaEquality, 
applyEquality, 
functionEquality, 
intEquality, 
functionIsType, 
lambdaFormation_alt, 
functionExtensionality, 
inhabitedIsType, 
equalityElimination, 
equalityTransitivity, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
setElimination, 
rename
Latex:
\mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[b:\mBbbR{}].  \mforall{}[a:Top].    (case-real3(a;b;f)  =  b)  supposing  \mforall{}n:\mBbbN{}\msupplus{}.  (\mneg{}\muparrow{}(f  n))
Date html generated:
2019_10_29-AM-09_38_02
Last ObjectModification:
2019_06_14-PM-03_28_18
Theory : reals
Home
Index