Step
*
2
1
1
of Lemma
case-real_wf
1. P : ℙ
2. a : ℕ+ ⟶ ℤ
3. regular-seq(a)
4. b : ℕ+ ⟶ ℤ
5. regular-seq(b)
6. f : {n:ℕ+| 4 < |(a n) - b n|} ⟶ ((↓P) ∨ (↓¬P))
7. λn.if 4 <z |(a n) - b n| ∧b (f n) then a n else b n fi ∈ ℕ+ ⟶ ℤ
8. 3-regular-seq(λn.if 4 <z |(a n) - b n| ∧b (f n) then a n else b n fi )
9. accelerate(3;λn.if 4 <z |(a n) - b n| ∧b (f n) then a n else b n fi ) ∈ ℝ
10. P
11. ∃n:ℕ+. 4 < |(a n) - b n|
⊢ accelerate(3;λn.if 4 <z |(a n) - b n| ∧b (f n) then a n else b n fi ) = a
BY
{ ((BLemma `req-iff-bdd-diff` THENA Auto)
THEN (RWO "accelerate-bdd-diff" 0 THENA Auto)
THEN BLemma `eventually-equal-implies-bdd-diff`
THEN Auto) }
1
1. P : ℙ
2. a : ℕ+ ⟶ ℤ
3. regular-seq(a)
4. b : ℕ+ ⟶ ℤ
5. regular-seq(b)
6. f : {n:ℕ+| 4 < |(a n) - b n|} ⟶ ((↓P) ∨ (↓¬P))
7. λn.if 4 <z |(a n) - b n| ∧b (f n) then a n else b n fi ∈ ℕ+ ⟶ ℤ
8. 3-regular-seq(λn.if 4 <z |(a n) - b n| ∧b (f n) then a n else b n fi )
9. accelerate(3;λn.if 4 <z |(a n) - b n| ∧b (f n) then a n else b n fi ) ∈ ℝ
10. P
11. ∃n:ℕ+. 4 < |(a n) - b n|
⊢ ∃m:ℕ+. ∀n:{m...}. (((λn.if 4 <z |(a n) - b n| ∧b (f n) then a n else b n fi ) n) = (a n) ∈ ℤ)
Latex:
Latex:
1. P : \mBbbP{}
2. a : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
3. regular-seq(a)
4. b : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
5. regular-seq(b)
6. f : \{n:\mBbbN{}\msupplus{}| 4 < |(a n) - b n|\} {}\mrightarrow{} ((\mdownarrow{}P) \mvee{} (\mdownarrow{}\mneg{}P))
7. \mlambda{}n.if 4 <z |(a n) - b n| \mwedge{}\msubb{} (f n) then a n else b n fi \mmember{} \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
8. 3-regular-seq(\mlambda{}n.if 4 <z |(a n) - b n| \mwedge{}\msubb{} (f n) then a n else b n fi )
9. accelerate(3;\mlambda{}n.if 4 <z |(a n) - b n| \mwedge{}\msubb{} (f n) then a n else b n fi ) \mmember{} \mBbbR{}
10. P
11. \mexists{}n:\mBbbN{}\msupplus{}. 4 < |(a n) - b n|
\mvdash{} accelerate(3;\mlambda{}n.if 4 <z |(a n) - b n| \mwedge{}\msubb{} (f n) then a n else b n fi ) = a
By
Latex:
((BLemma `req-iff-bdd-diff` THENA Auto)
THEN (RWO "accelerate-bdd-diff" 0 THENA Auto)
THEN BLemma `eventually-equal-implies-bdd-diff`
THEN Auto)
Home
Index