Nuprl Lemma : continuous-implies-functional

I:Interval. ∀f:I ⟶ℝ.  (f[x] continuous for x ∈  (∀a,b:{x:ℝx ∈ I} .  ((a b)  (f[a] f[b]))))


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ i-member: r ∈ I interval: Interval req: y real: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] so_apply: x[s] rfun: I ⟶ℝ uimplies: supposing a not: ¬A rneq: x ≠ y or: P ∨ Q guard: {T} false: False prop: so_lambda: λ2x.t[x] label: ...$L... t
Lemmas referenced :  continuous-rneq not-rneq req_inversion rless_transitivity1 rleq_weakening rless_irreflexivity rneq_wf req_wf real_wf i-member_wf continuous_wf rfun_wf interval_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination isectElimination applyEquality sqequalRule independent_isectElimination unionElimination setElimination rename because_Cache voidElimination setEquality lambdaEquality

Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    (f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  (\mforall{}a,b:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((a  =  b)  {}\mRightarrow{}  (f[a]  =  f[b]))))



Date html generated: 2016_05_18-AM-09_09_09
Last ObjectModification: 2015_12_27-PM-11_30_27

Theory : reals


Home Index