Nuprl Lemma : continuous-rdiv
∀I:Interval. ∀f,g:I ⟶ℝ.
  (f[x] continuous for x ∈ I 
⇒ g[x] continuous for x ∈ I 
⇒ g[x]≠r0 for x ∈ I 
⇒ (f[x]/g[x]) continuous for x ∈ I)
Proof
Definitions occuring in Statement : 
nonzero-on: f[x]≠r0 for x ∈ I
, 
continuous: f[x] continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
rdiv: (x/y)
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
rfun-eq: rfun-eq(I;f;g)
, 
r-ap: f(x)
, 
false: False
, 
not: ¬A
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermDivide: num "/" denom
, 
rat_term_ind: rat_term_ind, 
rtermVar: rtermVar(var)
, 
pi1: fst(t)
, 
and: P ∧ Q
, 
true: True
, 
rtermMultiply: left "*" right
, 
rtermConstant: "const"
, 
pi2: snd(t)
, 
label: ...$L... t
, 
prop: ℙ
Lemmas referenced : 
nonzero-on-implies, 
continuous_functionality_wrt_rfun-eq, 
rmul_wf, 
rdiv_wf, 
int-to-real_wf, 
sq_stable__i-member, 
assert-rat-term-eq2, 
rtermMultiply_wf, 
rtermVar_wf, 
rtermDivide_wf, 
rtermConstant_wf, 
istype-int, 
nonzero-on_wf, 
real_wf, 
i-member_wf, 
continuous_wf, 
rfun_wf, 
interval_wf, 
continuous-mul, 
continuous-rinv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
isectElimination, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
closedConclusion, 
natural_numberEquality, 
independent_isectElimination, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
int_eqEquality, 
approximateComputation, 
independent_pairFormation, 
universeIsType, 
setIsType, 
inhabitedIsType
Latex:
\mforall{}I:Interval.  \mforall{}f,g:I  {}\mrightarrow{}\mBbbR{}.
    (f[x]  continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  g[x]  continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  g[x]\mneq{}r0  for  x  \mmember{}  I
    {}\mRightarrow{}  (f[x]/g[x])  continuous  for  x  \mmember{}  I)
Date html generated:
2019_10_30-AM-07_46_48
Last ObjectModification:
2019_04_03-AM-00_22_24
Theory : reals
Home
Index