Nuprl Lemma : continuous-rdiv

I:Interval. ∀f,g:I ⟶ℝ.
  (f[x] continuous for x ∈  g[x] continuous for x ∈  g[x]≠r0 for x ∈  (f[x]/g[x]) continuous for x ∈ I)


Proof




Definitions occuring in Statement :  nonzero-on: f[x]≠r0 for x ∈ I continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ interval: Interval rdiv: (x/y) so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] rfun: I ⟶ℝ so_apply: x[s] uimplies: supposing a rneq: x ≠ y sq_stable: SqStable(P) squash: T rfun-eq: rfun-eq(I;f;g) r-ap: f(x) false: False not: ¬A rat_term_to_real: rat_term_to_real(f;t) rtermDivide: num "/" denom rat_term_ind: rat_term_ind rtermVar: rtermVar(var) pi1: fst(t) and: P ∧ Q true: True rtermMultiply: left "*" right rtermConstant: "const" pi2: snd(t) label: ...$L... t prop:
Lemmas referenced :  nonzero-on-implies continuous_functionality_wrt_rfun-eq rmul_wf rdiv_wf int-to-real_wf sq_stable__i-member assert-rat-term-eq2 rtermMultiply_wf rtermVar_wf rtermDivide_wf rtermConstant_wf istype-int nonzero-on_wf real_wf i-member_wf continuous_wf rfun_wf interval_wf continuous-mul continuous-rinv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis because_Cache isectElimination sqequalRule lambdaEquality_alt applyEquality closedConclusion natural_numberEquality independent_isectElimination setElimination rename imageMemberEquality baseClosed imageElimination int_eqEquality approximateComputation independent_pairFormation universeIsType setIsType inhabitedIsType

Latex:
\mforall{}I:Interval.  \mforall{}f,g:I  {}\mrightarrow{}\mBbbR{}.
    (f[x]  continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  g[x]  continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  g[x]\mneq{}r0  for  x  \mmember{}  I
    {}\mRightarrow{}  (f[x]/g[x])  continuous  for  x  \mmember{}  I)



Date html generated: 2019_10_30-AM-07_46_48
Last ObjectModification: 2019_04_03-AM-00_22_24

Theory : reals


Home Index