Step
*
1
2
of Lemma
decimal-digits_wf
1. d : ℕ+
2. x : ℝ
3. N : ℕ+
4. 10^d = N ∈ ℕ+
5. N = (2 * (N ÷ 2)) ∈ ℤ
⊢ eval N2 = N ÷ 2 in
eval D = x N2 in
eval R = D rem N in
eval Q = D ÷ N in
<Q, R> ∈ {p:ℤ × ℤ| let n,m = p in |x - r(n) + (r(m)/r(N))| ≤ (r(2)/r(N))}
BY
{ ((DupHyp (-1) THEN MoveToConcl (-1))
THEN (InstLemma `rational-approx-property` [⌜x⌝;⌜N ÷ 2⌝]⋅ THENA Auto)
THEN Unfold `rational-approx` (-1)
THEN MoveToConcl (-1)
THEN ((GenConcl ⌜(N ÷ 2) = N2 ∈ ℕ+⌝⋅ THENA Auto) THENA Auto)⋅
THEN (CallByValueReduce 0 THENA Auto)
THEN ((GenConcl ⌜(x N2) = D ∈ ℤ⌝⋅ THENA Auto) THENA Auto)⋅
THEN (CallByValueReduce 0 THENA Auto)) }
1
1. d : ℕ+
2. x : ℝ
3. N : ℕ+
4. 10^d = N ∈ ℕ+
5. N = (2 * (N ÷ 2)) ∈ ℤ
6. N2 : ℕ+
7. (N ÷ 2) = N2 ∈ ℕ+
8. D : ℤ
9. (x N2) = D ∈ ℤ
⊢ (|x - (r(D))/2 * N2| ≤ (r1/r(N2)))
⇒ (N = (2 * N2) ∈ ℤ)
⇒ (eval R = D rem N in
eval Q = D ÷ N in
<Q, R> ∈ {p:ℤ × ℤ| let n,m = p in |x - r(n) + (r(m)/r(N))| ≤ (r(2)/r(N))} )
Latex:
Latex:
1. d : \mBbbN{}\msupplus{}
2. x : \mBbbR{}
3. N : \mBbbN{}\msupplus{}
4. 10\^{}d = N
5. N = (2 * (N \mdiv{} 2))
\mvdash{} eval N2 = N \mdiv{} 2 in
eval D = x N2 in
eval R = D rem N in
eval Q = D \mdiv{} N in
<Q, R> \mmember{} \{p:\mBbbZ{} \mtimes{} \mBbbZ{}| let n,m = p in |x - r(n) + (r(m)/r(N))| \mleq{} (r(2)/r(N))\}
By
Latex:
((DupHyp (-1) THEN MoveToConcl (-1))
THEN (InstLemma `rational-approx-property` [\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}N \mdiv{} 2\mkleeneclose{}]\mcdot{} THENA Auto)
THEN Unfold `rational-approx` (-1)
THEN MoveToConcl (-1)
THEN ((GenConcl \mkleeneopen{}(N \mdiv{} 2) = N2\mkleeneclose{}\mcdot{} THENA Auto) THENA Auto)\mcdot{}
THEN (CallByValueReduce 0 THENA Auto)
THEN ((GenConcl \mkleeneopen{}(x N2) = D\mkleeneclose{}\mcdot{} THENA Auto) THENA Auto)\mcdot{}
THEN (CallByValueReduce 0 THENA Auto))
Home
Index