Step
*
2
1
1
1
1
1
of Lemma
dense-in-reals-iff
1. X : ℝ ⟶ ℙ
2. ∀x:ℝ. ∀n:ℕ+. ∃y:ℝ. ((X y) ∧ (|x - y| < (r1/r(n))))
3. a : {a:ℝ| a ∈ (-∞, ∞)}
4. b : {r:ℝ| r ∈ (-∞, ∞)}
5. a < b
6. (|ravg(a;b) - a| = ((r1/r(2)) * |b - a|)) ∧ (|ravg(a;b) - b| = ((r1/r(2)) * |b - a|))
7. k : ℕ+
8. (r1/r(k)) < ((r1/r(2)) * |b - a|)
9. y : ℝ
10. X y
11. ((y - (r1/r(k))) < ravg(a;b)) ∧ (ravg(a;b) < (y + (r1/r(k))))
⊢ ((a < y) ∧ (y < b)) ∧ (X y)
BY
{ (InstLemma `ravg-between` [⌜a⌝;⌜b⌝]⋅ THEN Auto) }
1
1. X : ℝ ⟶ ℙ
2. ∀x:ℝ. ∀n:ℕ+. ∃y:ℝ. ((X y) ∧ (|x - y| < (r1/r(n))))
3. a : {a:ℝ| a ∈ (-∞, ∞)}
4. b : {r:ℝ| r ∈ (-∞, ∞)}
5. a < b
6. |ravg(a;b) - a| = ((r1/r(2)) * |b - a|)
7. |ravg(a;b) - b| = ((r1/r(2)) * |b - a|)
8. k : ℕ+
9. (r1/r(k)) < ((r1/r(2)) * |b - a|)
10. y : ℝ
11. X y
12. (y - (r1/r(k))) < ravg(a;b)
13. ravg(a;b) < (y + (r1/r(k)))
14. a < ravg(a;b)
15. ravg(a;b) < b
⊢ a < y
2
1. X : ℝ ⟶ ℙ
2. ∀x:ℝ. ∀n:ℕ+. ∃y:ℝ. ((X y) ∧ (|x - y| < (r1/r(n))))
3. a : {a:ℝ| a ∈ (-∞, ∞)}
4. b : {r:ℝ| r ∈ (-∞, ∞)}
5. a < b
6. |ravg(a;b) - a| = ((r1/r(2)) * |b - a|)
7. |ravg(a;b) - b| = ((r1/r(2)) * |b - a|)
8. k : ℕ+
9. (r1/r(k)) < ((r1/r(2)) * |b - a|)
10. y : ℝ
11. X y
12. (y - (r1/r(k))) < ravg(a;b)
13. ravg(a;b) < (y + (r1/r(k)))
14. a < ravg(a;b)
15. ravg(a;b) < b
16. a < y
⊢ y < b
Latex:
Latex:
1. X : \mBbbR{} {}\mrightarrow{} \mBbbP{}
2. \mforall{}x:\mBbbR{}. \mforall{}n:\mBbbN{}\msupplus{}. \mexists{}y:\mBbbR{}. ((X y) \mwedge{} (|x - y| < (r1/r(n))))
3. a : \{a:\mBbbR{}| a \mmember{} (-\minfty{}, \minfty{})\}
4. b : \{r:\mBbbR{}| r \mmember{} (-\minfty{}, \minfty{})\}
5. a < b
6. (|ravg(a;b) - a| = ((r1/r(2)) * |b - a|)) \mwedge{} (|ravg(a;b) - b| = ((r1/r(2)) * |b - a|))
7. k : \mBbbN{}\msupplus{}
8. (r1/r(k)) < ((r1/r(2)) * |b - a|)
9. y : \mBbbR{}
10. X y
11. ((y - (r1/r(k))) < ravg(a;b)) \mwedge{} (ravg(a;b) < (y + (r1/r(k))))
\mvdash{} ((a < y) \mwedge{} (y < b)) \mwedge{} (X y)
By
Latex:
(InstLemma `ravg-between` [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]\mcdot{} THEN Auto)
Home
Index