Nuprl Lemma : derivative-implies-strictly-decreasing-closed
∀a:ℝ. ∀b:{b:ℝ| a < b} . ∀f,f':[a, b] ⟶ℝ.
  (d(f[x])/dx = λx.f'[x] on [a, b]
  ⇒ ifun(λx.f'[x];[a, b])
  ⇒ (∀x:{x:ℝ| x ∈ [a, b]} . (f'[x] ≤ r0))
  ⇒ (∀x:{x:ℝ| x ∈ (a, b)} . (f'[x] < r0))
  ⇒ f[x] strictly-decreasing for x ∈ [a, b])
Proof
Definitions occuring in Statement : 
strictly-decreasing-on-interval: f[x] strictly-decreasing for x ∈ I, 
derivative: d(f[x])/dx = λz.g[z] on I, 
ifun: ifun(f;I), 
rfun: I ⟶ℝ, 
rooint: (l, u), 
rccint: [l, u], 
i-member: r ∈ I, 
rleq: x ≤ y, 
rless: x < y, 
int-to-real: r(n), 
real: ℝ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
lambda: λx.A[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
top: Top, 
rfun: I ⟶ℝ, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
so_lambda: λ2x.t[x], 
label: ...$L... t, 
subinterval: I ⊆ J , 
cand: A c∧ B, 
guard: {T}, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q, 
i-member: r ∈ I, 
rccint: [l, u], 
rooint: (l, u), 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
ifun: ifun(f;I), 
real-fun: real-fun(f;a;b), 
strictly-increasing-on-interval: f[x] strictly-increasing for x ∈ I, 
strictly-decreasing-on-interval: f[x] strictly-decreasing for x ∈ I, 
sq_stable: SqStable(P), 
squash: ↓T
Lemmas referenced : 
i-member_wf, 
rooint_wf, 
rless_wf, 
member_rccint_lemma, 
istype-void, 
int-to-real_wf, 
rccint_wf, 
rleq_wf, 
ifun_wf, 
rccint-icompact, 
derivative_wf, 
rfun_wf, 
real_wf, 
derivative-implies-strictly-increasing-closed, 
rminus_wf, 
member_rooint_lemma, 
rleq_weakening_rless, 
radd-preserves-rleq, 
radd-preserves-rless, 
radd_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
itermMinus_wf, 
subtype_rel_sets_simple, 
rleq_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_minus_lemma, 
rless_functionality, 
derivative-minus, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
req_wf, 
req_weakening, 
req_functionality, 
rminus_functionality, 
sq_stable__rless
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalRule, 
functionIsType, 
setIsType, 
inhabitedIsType, 
hypothesisEquality, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesis, 
applyEquality, 
because_Cache, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
closedConclusion, 
natural_numberEquality, 
lambdaEquality_alt, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
productIsType, 
approximateComputation, 
int_eqEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  <  b\}  .  \mforall{}f,f':[a,  b]  {}\mrightarrow{}\mBbbR{}.
    (d(f[x])/dx  =  \mlambda{}x.f'[x]  on  [a,  b]
    {}\mRightarrow{}  ifun(\mlambda{}x.f'[x];[a,  b])
    {}\mRightarrow{}  (\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  (f'[x]  \mleq{}  r0))
    {}\mRightarrow{}  (\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  (a,  b)\}  .  (f'[x]  <  r0))
    {}\mRightarrow{}  f[x]  strictly-decreasing  for  x  \mmember{}  [a,  b])
Date html generated:
2019_10_30-AM-09_08_37
Last ObjectModification:
2018_11_12-AM-11_40_28
Theory : reals
Home
Index