Step
*
1
2
1
1
of Lemma
dot-product-split
1. n : ℕ
2. k : ℕn
3. x : ℝ^n
4. y : ℝ^n
5. λi.(x (k + i)) ∈ ℝ^n - k
6. λi.(y (k + i)) ∈ ℝ^n - k
7. ¬(k = 0 ∈ ℤ)
8. x⋅y = (x⋅y + Σ{(x i) * (y i) | (k - 1) + 1≤i≤n - 1})
⊢ Σ{(x i) * (y i) | (k - 1) + 1≤i≤n - 1} = λi.(x (k + i))⋅λi.(y (k + i))
BY
{ RepUR ``dot-product`` 0 }
1
1. n : ℕ
2. k : ℕn
3. x : ℝ^n
4. y : ℝ^n
5. λi.(x (k + i)) ∈ ℝ^n - k
6. λi.(y (k + i)) ∈ ℝ^n - k
7. ¬(k = 0 ∈ ℤ)
8. x⋅y = (x⋅y + Σ{(x i) * (y i) | (k - 1) + 1≤i≤n - 1})
⊢ Σ{(x i) * (y i) | (k - 1) + 1≤i≤n - 1} = Σ{(x (k + i)) * (y (k + i)) | 0≤i≤n - k - 1}
Latex:
Latex:
1.  n  :  \mBbbN{}
2.  k  :  \mBbbN{}n
3.  x  :  \mBbbR{}\^{}n
4.  y  :  \mBbbR{}\^{}n
5.  \mlambda{}i.(x  (k  +  i))  \mmember{}  \mBbbR{}\^{}n  -  k
6.  \mlambda{}i.(y  (k  +  i))  \mmember{}  \mBbbR{}\^{}n  -  k
7.  \mneg{}(k  =  0)
8.  x\mcdot{}y  =  (x\mcdot{}y  +  \mSigma{}\{(x  i)  *  (y  i)  |  (k  -  1)  +  1\mleq{}i\mleq{}n  -  1\})
\mvdash{}  \mSigma{}\{(x  i)  *  (y  i)  |  (k  -  1)  +  1\mleq{}i\mleq{}n  -  1\}  =  \mlambda{}i.(x  (k  +  i))\mcdot{}\mlambda{}i.(y  (k  +  i))
By
Latex:
RepUR  ``dot-product``  0
Home
Index