Step
*
1
1
of Lemma
finite-subcover-implies-m-TB
1. [X] : Type
2. d : metric(X)
3. ∀[I:Type]. ∀[A:I ⟶ X ⟶ ℙ].  (m-open-cover(X;d;I;i,x.A[i;x]) 
⇒ (∃n:ℕ+. ∃L:ℕn ⟶ I. ∀x:X. ∃j:ℕn. A[L j;x]))
4. k : ℕ
⊢ m-open-cover(X;d;X;x,y.mdist(d;x;y) < (r1/r(k + 1)))
BY
{ (D 0 THEN Auto) }
1
1. [X] : Type
2. d : metric(X)
3. ∀[I:Type]. ∀[A:I ⟶ X ⟶ ℙ].  (m-open-cover(X;d;I;i,x.A[i;x]) 
⇒ (∃n:ℕ+. ∃L:ℕn ⟶ I. ∀x:X. ∃j:ℕn. A[L j;x]))
4. k : ℕ
5. x : X
⊢ m-open(X;d;y.mdist(d;x;y) < (r1/r(k + 1)))
2
1. [X] : Type
2. d : metric(X)
3. ∀[I:Type]. ∀[A:I ⟶ X ⟶ ℙ].  (m-open-cover(X;d;I;i,x.A[i;x]) 
⇒ (∃n:ℕ+. ∃L:ℕn ⟶ I. ∀x:X. ∃j:ℕn. A[L j;x]))
4. k : ℕ
5. y : X
⊢ ∃x:X. (mdist(d;x;y) < (r1/r(k + 1)))
Latex:
Latex:
1.  [X]  :  Type
2.  d  :  metric(X)
3.  \mforall{}[I:Type].  \mforall{}[A:I  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}].
          (m-open-cover(X;d;I;i,x.A[i;x])  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}\msupplus{}.  \mexists{}L:\mBbbN{}n  {}\mrightarrow{}  I.  \mforall{}x:X.  \mexists{}j:\mBbbN{}n.  A[L  j;x]))
4.  k  :  \mBbbN{}
\mvdash{}  m-open-cover(X;d;X;x,y.mdist(d;x;y)  <  (r1/r(k  +  1)))
By
Latex:
(D  0  THEN  Auto)
Home
Index