Nuprl Lemma : frs-refines_weakening

[p,q:ℝ List].  ((p q ∈ (ℝ List))  frs-refines(p;q))


Proof




Definitions occuring in Statement :  frs-refines: frs-refines(p;q) real: list: List uall: [x:A]. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: frs-refines: frs-refines(p;q) l_all: (∀x∈L.P[x]) all: x:A. B[x] l_exists: (∃x∈L. P[x]) exists: x:A. B[x] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top less_than: a < b squash: T
Lemmas referenced :  length_wf_nat real_wf equal_wf nat_wf req_weakening select_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma req_wf int_seg_wf frs-refines_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut dependent_set_memberEquality hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_pairFormation because_Cache setElimination rename independent_isectElimination natural_numberEquality productElimination dependent_functionElimination unionElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll imageElimination hyp_replacement equalitySymmetry Error :applyLambdaEquality

Latex:
\mforall{}[p,q:\mBbbR{}  List].    ((p  =  q)  {}\mRightarrow{}  frs-refines(p;q))



Date html generated: 2016_10_26-AM-09_32_25
Last ObjectModification: 2016_07_12-AM-08_19_47

Theory : reals


Home Index