Nuprl Lemma : i-closed-closed
∀I:Interval. (i-closed(I) ⇒ closed-rset(λx.(x ∈ I)))
Proof
Definitions occuring in Statement : 
i-member: r ∈ I, 
i-closed: i-closed(I), 
interval: Interval, 
closed-rset: closed-rset(A), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
lambda: λx.A[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
closed-rset: closed-rset(A), 
member-closure: y ∈ closure(A), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
interval: Interval, 
i-member: r ∈ I, 
i-closed: i-closed(I), 
isl: isl(x), 
outl: outl(x), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bor: p ∨bq, 
bfalse: ff, 
assert: ↑b, 
cand: A c∧ B, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
so_apply: x[s], 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
false: False, 
real: ℝ, 
prop: ℙ, 
true: True, 
guard: {T}
Lemmas referenced : 
rleq-limit, 
nat_wf, 
constant-limit, 
req_weakening, 
regular-int-seq_wf, 
member-closure_wf, 
i-member_wf, 
real_wf, 
i-closed_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
cut, 
rename, 
lemma_by_obid, 
isectElimination, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
voidElimination, 
setElimination, 
dependent_set_memberEquality, 
natural_numberEquality
Latex:
\mforall{}I:Interval.  (i-closed(I)  {}\mRightarrow{}  closed-rset(\mlambda{}x.(x  \mmember{}  I)))
Date html generated:
2016_05_18-AM-09_20_56
Last ObjectModification:
2015_12_27-PM-11_23_23
Theory : reals
Home
Index