Nuprl Lemma : i-member-finite
∀[I:Interval]. ∀[r:ℝ]. left-endpoint(I)≤r≤right-endpoint(I) supposing r ∈ I supposing i-finite(I)
Proof
Definitions occuring in Statement : 
i-member: r ∈ I
, 
right-endpoint: right-endpoint(I)
, 
left-endpoint: left-endpoint(I)
, 
i-finite: i-finite(I)
, 
interval: Interval
, 
rbetween: x≤y≤z
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
interval: Interval
, 
i-member: r ∈ I
, 
i-finite: i-finite(I)
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
and: P ∧ Q
, 
right-endpoint: right-endpoint(I)
, 
left-endpoint: left-endpoint(I)
, 
rbetween: x≤y≤z
, 
endpoints: endpoints(I)
, 
outl: outl(x)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
cand: A c∧ B
, 
guard: {T}
, 
bfalse: ff
, 
false: False
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
prop: ℙ
Lemmas referenced : 
rleq_weakening_rless, 
less_than'_wf, 
rsub_wf, 
left-endpoint_wf, 
real_wf, 
nat_plus_wf, 
right-endpoint_wf, 
i-member_wf, 
i-finite_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
sqequalRule, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
independent_pairFormation, 
voidElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[I:Interval].  \mforall{}[r:\mBbbR{}].  left-endpoint(I)\mleq{}r\mleq{}right-endpoint(I)  supposing  r  \mmember{}  I  supposing  i-finite(I)
Date html generated:
2016_05_18-AM-08_19_39
Last ObjectModification:
2015_12_27-PM-11_57_57
Theory : reals
Home
Index