Nuprl Lemma : i-member-finite

[I:Interval]. ∀[r:ℝ]. left-endpoint(I)≤r≤right-endpoint(I) supposing r ∈ supposing i-finite(I)


Proof




Definitions occuring in Statement :  i-member: r ∈ I right-endpoint: right-endpoint(I) left-endpoint: left-endpoint(I) i-finite: i-finite(I) interval: Interval rbetween: x≤y≤z real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a interval: Interval i-member: r ∈ I i-finite: i-finite(I) isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt and: P ∧ Q right-endpoint: right-endpoint(I) left-endpoint: left-endpoint(I) rbetween: x≤y≤z endpoints: endpoints(I) outl: outl(x) pi1: fst(t) pi2: snd(t) cand: c∧ B guard: {T} bfalse: ff false: False rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B not: ¬A implies:  Q subtype_rel: A ⊆B real: prop:
Lemmas referenced :  rleq_weakening_rless less_than'_wf rsub_wf left-endpoint_wf real_wf nat_plus_wf right-endpoint_wf i-member_wf i-finite_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin unionElimination sqequalRule hypothesis lemma_by_obid isectElimination hypothesisEquality independent_isectElimination independent_pairFormation voidElimination independent_pairEquality lambdaEquality dependent_functionElimination because_Cache applyEquality setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[I:Interval].  \mforall{}[r:\mBbbR{}].  left-endpoint(I)\mleq{}r\mleq{}right-endpoint(I)  supposing  r  \mmember{}  I  supposing  i-finite(I)



Date html generated: 2016_05_18-AM-08_19_39
Last ObjectModification: 2015_12_27-PM-11_57_57

Theory : reals


Home Index