Nuprl Lemma : ifun-iff-continuous
∀I:Interval. (icompact(I) 
⇒ (∀f:I ⟶ℝ. (ifun(λx.f[x];I) 
⇐⇒ f[x] continuous for x ∈ I)))
Proof
Definitions occuring in Statement : 
ifun: ifun(f;I)
, 
continuous: f[x] continuous for x ∈ I
, 
icompact: icompact(I)
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s]
, 
rfun: I ⟶ℝ
, 
rev_implies: P 
⇐ Q
, 
label: ...$L... t
, 
ifun: ifun(f;I)
, 
top: Top
, 
icompact: icompact(I)
Lemmas referenced : 
ifun-continuous, 
ifun_wf, 
real_wf, 
i-member_wf, 
continuous_wf, 
rfun_wf, 
icompact_wf, 
interval_wf, 
icompact-is-rccint, 
left_endpoint_rccint_lemma, 
istype-void, 
right_endpoint_rccint_lemma, 
real-fun-iff-continuous, 
left-endpoint_wf, 
right-endpoint_wf, 
rccint_wf, 
icompact-endpoints-rleq, 
real-cont-iff-continuous
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
dependent_set_memberEquality_alt, 
because_Cache, 
universeIsType, 
isectElimination, 
independent_isectElimination, 
lambdaEquality_alt, 
applyEquality, 
setIsType, 
isect_memberEquality_alt, 
voidElimination, 
productElimination
Latex:
\mforall{}I:Interval.  (icompact(I)  {}\mRightarrow{}  (\mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  (ifun(\mlambda{}x.f[x];I)  \mLeftarrow{}{}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  I)))
Date html generated:
2019_10_30-AM-07_16_51
Last ObjectModification:
2019_10_09-PM-06_43_53
Theory : reals
Home
Index