Nuprl Lemma : ifun-iff-continuous

I:Interval. (icompact(I)  (∀f:I ⟶ℝ(ifun(λx.f[x];I) ⇐⇒ f[x] continuous for x ∈ I)))


Proof




Definitions occuring in Statement :  ifun: ifun(f;I) continuous: f[x] continuous for x ∈ I icompact: icompact(I) rfun: I ⟶ℝ interval: Interval so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q lambda: λx.A[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T so_lambda: λ2x.t[x] uall: [x:A]. B[x] uimplies: supposing a prop: so_apply: x[s] rfun: I ⟶ℝ rev_implies:  Q label: ...$L... t ifun: ifun(f;I) top: Top icompact: icompact(I)
Lemmas referenced :  ifun-continuous ifun_wf real_wf i-member_wf continuous_wf rfun_wf icompact_wf interval_wf icompact-is-rccint left_endpoint_rccint_lemma istype-void right_endpoint_rccint_lemma real-fun-iff-continuous left-endpoint_wf right-endpoint_wf rccint_wf icompact-endpoints-rleq real-cont-iff-continuous
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis sqequalRule dependent_set_memberEquality_alt because_Cache universeIsType isectElimination independent_isectElimination lambdaEquality_alt applyEquality setIsType isect_memberEquality_alt voidElimination productElimination

Latex:
\mforall{}I:Interval.  (icompact(I)  {}\mRightarrow{}  (\mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  (ifun(\mlambda{}x.f[x];I)  \mLeftarrow{}{}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  I)))



Date html generated: 2019_10_30-AM-07_16_51
Last ObjectModification: 2019_10_09-PM-06_43_53

Theory : reals


Home Index