Nuprl Lemma : icompact-endpoints-rleq
∀[I:Interval]. left-endpoint(I) ≤ right-endpoint(I) supposing icompact(I)
Proof
Definitions occuring in Statement : 
icompact: icompact(I)
, 
right-endpoint: right-endpoint(I)
, 
left-endpoint: left-endpoint(I)
, 
interval: Interval
, 
rleq: x ≤ y
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
i-length: |I|
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
icompact: icompact(I)
, 
rsub: x - y
Lemmas referenced : 
icompact-length-nonneg, 
radd-preserves-rleq, 
int-to-real_wf, 
rsub_wf, 
right-endpoint_wf, 
left-endpoint_wf, 
icompact_wf, 
less_than'_wf, 
nat_plus_wf, 
interval_wf, 
rleq_wf, 
radd_wf, 
rminus_wf, 
uiff_transitivity, 
rleq_functionality, 
radd_comm, 
radd_functionality, 
req_weakening, 
radd-rminus-assoc, 
radd-zero-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
natural_numberEquality, 
because_Cache, 
productElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
applyEquality, 
minusEquality, 
independent_functionElimination
Latex:
\mforall{}[I:Interval].  left-endpoint(I)  \mleq{}  right-endpoint(I)  supposing  icompact(I)
Date html generated:
2016_05_18-AM-08_47_09
Last ObjectModification:
2015_12_27-PM-11_47_48
Theory : reals
Home
Index