Nuprl Lemma : icompact-endpoints-rleq

[I:Interval]. left-endpoint(I) ≤ right-endpoint(I) supposing icompact(I)


Proof




Definitions occuring in Statement :  icompact: icompact(I) right-endpoint: right-endpoint(I) left-endpoint: left-endpoint(I) interval: Interval rleq: x ≤ y uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a i-length: |I| uiff: uiff(P;Q) and: P ∧ Q rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B icompact: icompact(I) rsub: y
Lemmas referenced :  icompact-length-nonneg radd-preserves-rleq int-to-real_wf rsub_wf right-endpoint_wf left-endpoint_wf icompact_wf less_than'_wf nat_plus_wf interval_wf rleq_wf radd_wf rminus_wf uiff_transitivity rleq_functionality radd_comm radd_functionality req_weakening radd-rminus-assoc radd-zero-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis natural_numberEquality because_Cache productElimination sqequalRule lambdaEquality dependent_functionElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination applyEquality minusEquality independent_functionElimination

Latex:
\mforall{}[I:Interval].  left-endpoint(I)  \mleq{}  right-endpoint(I)  supposing  icompact(I)



Date html generated: 2016_05_18-AM-08_47_09
Last ObjectModification: 2015_12_27-PM-11_47_48

Theory : reals


Home Index