Nuprl Lemma : iproper-length

I:Interval. ((i-finite(I) ∧ iproper(I))  (r0 < |I|))


Proof




Definitions occuring in Statement :  i-length: |I| iproper: iproper(I) i-finite: i-finite(I) interval: Interval rless: x < y int-to-real: r(n) all: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q iproper: iproper(I) i-length: |I| member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q prop: rsub: y
Lemmas referenced :  radd-preserves-rless int-to-real_wf rsub_wf right-endpoint_wf left-endpoint_wf i-finite_wf iproper_wf interval_wf radd_wf rminus_wf rless_wf rless_functionality radd-zero-both req_weakening radd-rminus-assoc radd_comm radd_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin independent_functionElimination hypothesis cut introduction extract_by_obid dependent_functionElimination isectElimination natural_numberEquality hypothesisEquality independent_isectElimination productEquality addLevel levelHypothesis sqequalRule

Latex:
\mforall{}I:Interval.  ((i-finite(I)  \mwedge{}  iproper(I))  {}\mRightarrow{}  (r0  <  |I|))



Date html generated: 2016_10_26-AM-09_28_38
Last ObjectModification: 2016_08_15-PM-06_06_41

Theory : reals


Home Index