Nuprl Lemma : locally-non-constant-rational_wf

[a,b,c:ℝ]. ∀[f:[a, b] ⟶ℝ].  (locally-non-constant-rational(f;a;b;c) ∈ ℙ)


Proof




Definitions occuring in Statement :  locally-non-constant-rational: locally-non-constant-rational(f;a;b;c) rfun: I ⟶ℝ rccint: [l, u] real: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T locally-non-constant-rational: locally-non-constant-rational(f;a;b;c) so_lambda: λ2x.t[x] implies:  Q prop: and: P ∧ Q subtype_rel: A ⊆B nat_plus: + int_nzero: -o so_apply: x[s] uimplies: supposing a all: x:A. B[x] nequal: a ≠ b ∈  not: ¬A false: False guard: {T} rless: x < y sq_exists: x:{A| B[x]} satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top i-member: r ∈ I rccint: [l, u]
Lemmas referenced :  rfun_wf rleq_transitivity rccint_wf r-ap_wf rneq_wf int-to-real_wf equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_plus_properties nequal_wf less_than_wf subtype_rel_sets int-rdiv_wf nat_plus_wf exists_wf rless_wf rleq_wf real_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality because_Cache functionEquality hypothesisEquality intEquality productEquality applyEquality natural_numberEquality independent_isectElimination setElimination rename setEquality lambdaFormation dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,b,c:\mBbbR{}].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].    (locally-non-constant-rational(f;a;b;c)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-09_24_29
Last ObjectModification: 2016_01_17-AM-02_42_36

Theory : reals


Home Index