Nuprl Lemma : locally-non-constant-rational_wf
∀[a,b,c:ℝ]. ∀[f:[a, b] ⟶ℝ].  (locally-non-constant-rational(f;a;b;c) ∈ ℙ)
Proof
Definitions occuring in Statement : 
locally-non-constant-rational: locally-non-constant-rational(f;a;b;c)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
locally-non-constant-rational: locally-non-constant-rational(f;a;b;c)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
int_nzero: ℤ-o
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
guard: {T}
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
i-member: r ∈ I
, 
rccint: [l, u]
Lemmas referenced : 
rfun_wf, 
rleq_transitivity, 
rccint_wf, 
r-ap_wf, 
rneq_wf, 
int-to-real_wf, 
equal_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_plus_properties, 
nequal_wf, 
less_than_wf, 
subtype_rel_sets, 
int-rdiv_wf, 
nat_plus_wf, 
exists_wf, 
rless_wf, 
rleq_wf, 
real_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
because_Cache, 
functionEquality, 
hypothesisEquality, 
intEquality, 
productEquality, 
applyEquality, 
natural_numberEquality, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
dependent_pairFormation, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a,b,c:\mBbbR{}].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].    (locally-non-constant-rational(f;a;b;c)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-09_24_29
Last ObjectModification:
2016_01_17-AM-02_42_36
Theory : reals
Home
Index