Step
*
1
1
2
1
of Lemma
mesh-property
1. I : Interval
2. icompact(I)
3. [%22] : partitions(I;[])
4. e : ℝ
5. r0 < e
6. partition-mesh(I;[]) ≤ e
7. x : ℝ
8. x ∈ I
9. full-partition(I;[])[0]≤x≤full-partition(I;[])[||full-partition(I;[])|| - 1]
10. ||full-partition(I;[])|| = 2 ∈ ℤ
11. i : ℕ1
12. ¬0 < 0
13. r0≤right-endpoint(I) - left-endpoint(I)≤partition-mesh(I;[])
⊢ r0≤full-partition(I;[])[i + 1] - full-partition(I;[])[i]≤partition-mesh(I;[])
BY
{ (Subst ⌜i ~ 0⌝ 0⋅ THEN Auto' THEN RepUR ``full-partition`` 0) }
Latex:
Latex:
1. I : Interval
2. icompact(I)
3. [\%22] : partitions(I;[])
4. e : \mBbbR{}
5. r0 < e
6. partition-mesh(I;[]) \mleq{} e
7. x : \mBbbR{}
8. x \mmember{} I
9. full-partition(I;[])[0]\mleq{}x\mleq{}full-partition(I;[])[||full-partition(I;[])|| - 1]
10. ||full-partition(I;[])|| = 2
11. i : \mBbbN{}1
12. \mneg{}0 < 0
13. r0\mleq{}right-endpoint(I) - left-endpoint(I)\mleq{}partition-mesh(I;[])
\mvdash{} r0\mleq{}full-partition(I;[])[i + 1] - full-partition(I;[])[i]\mleq{}partition-mesh(I;[])
By
Latex:
(Subst \mkleeneopen{}i \msim{} 0\mkleeneclose{} 0\mcdot{} THEN Auto' THEN RepUR ``full-partition`` 0)
Home
Index