Nuprl Lemma : mfun-strong-subtype

[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)]. ∀[A:Type].
  strong-subtype(FUN(X ⟶ A);FUN(X ⟶ Y)) supposing metric-subspace(Y;d';A)


Proof




Definitions occuring in Statement :  metric-subspace: metric-subspace(X;d;A) mfun: FUN(X ⟶ Y) metric: metric(X) strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a strong-subtype: strong-subtype(A;B) member: t ∈ T metric-subspace: metric-subspace(X;d;A) and: P ∧ Q subtype_rel: A ⊆B cand: c∧ B sq_stable: SqStable(P) implies:  Q squash: T exists: x:A. B[x] prop: mfun: FUN(X ⟶ Y) is-mfun: f:FUN(X;Y) all: x:A. B[x] guard: {T}
Lemmas referenced :  sq_stable__subtype_rel mfun_wf metric-on-subtype mfun-subtype equal_wf is-mfun_wf metric-subspace_wf metric_wf istype-universe meq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination applyEquality independent_isectElimination hypothesis sqequalRule independent_functionElimination imageMemberEquality baseClosed imageElimination independent_pairFormation setEquality productEquality lambdaEquality_alt setElimination rename applyLambdaEquality dependent_set_memberEquality_alt universeIsType because_Cache setIsType productIsType equalityIstype inhabitedIsType instantiate universeEquality functionExtensionality dependent_functionElimination equalitySymmetry equalityTransitivity lambdaFormation_alt

Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].  \mforall{}[A:Type].
    strong-subtype(FUN(X  {}\mrightarrow{}  A);FUN(X  {}\mrightarrow{}  Y))  supposing  metric-subspace(Y;d';A)



Date html generated: 2019_10_30-AM-06_32_28
Last ObjectModification: 2019_10_02-AM-10_06_18

Theory : reals


Home Index