Nuprl Lemma : mtb-cantor-map_wf

[X:Type]. ∀[d:metric(X)]. ∀[cmplt:mcomplete(X with d)]. ∀[mtb:m-TB(X;d)]. ∀[p:mtb-cantor(mtb)].
  (mtb-cantor-map(d;cmplt;mtb;p) ∈ X)


Proof




Definitions occuring in Statement :  mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p) mtb-cantor: mtb-cantor(mtb) m-TB: m-TB(X;d) mcomplete: mcomplete(M) mk-metric-space: with d metric: metric(X) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p) guard: {T} prop:
Lemmas referenced :  m-regularize-mcauchy cauchy-mlimit_wf m-regularize_wf mtb-seq_wf mtb-cantor_wf m-TB_wf mcomplete_wf mk-metric-space_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule hypothesis universeIsType instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[cmplt:mcomplete(X  with  d)].  \mforall{}[mtb:m-TB(X;d)].  \mforall{}[p:mtb-cantor(mtb)].
    (mtb-cantor-map(d;cmplt;mtb;p)  \mmember{}  X)



Date html generated: 2019_10_30-AM-07_05_11
Last ObjectModification: 2019_10_09-AM-09_21_27

Theory : reals


Home Index