Nuprl Lemma : nearby-cases-ext

n:ℕ+. ∀x,y:ℝ.  ((x < y) ∨ (y < x) ∨ (|x y| ≤ (r1/r(n))))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] or: P ∨ Q natural_number: $n
Definitions unfolded in proof :  member: t ∈ T nearby-cases decidable__lt decidable__squash uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] decidable_functionality iff_preserves_decidability decidable__and decidable__less_than' rleq_functionality_wrt_implies
Lemmas referenced :  nearby-cases lifting-strict-spread has-value_wf_base base_wf is-exception_wf top_wf equal_wf lifting-strict-decide lifting-strict-less decidable__lt decidable__squash decidable_functionality iff_preserves_decidability decidable__and decidable__less_than' rleq_functionality_wrt_implies
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueApply baseApply closedConclusion hypothesisEquality applyExceptionCases inrFormation imageMemberEquality imageElimination exceptionSqequal inlFormation callbyvalueDecide equalityTransitivity equalitySymmetry unionEquality unionElimination sqleReflexivity dependent_functionElimination independent_functionElimination decideExceptionCases because_Cache

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x,y:\mBbbR{}.    ((x  <  y)  \mvee{}  (y  <  x)  \mvee{}  (|x  -  y|  \mleq{}  (r1/r(n))))



Date html generated: 2017_10_03-AM-08_48_16
Last ObjectModification: 2017_07_28-AM-07_33_18

Theory : reals


Home Index