Nuprl Lemma : nearby-partitions_functionality

p,q:ℝ List. ∀e1,e2:ℝ.  ((e1 ≤ e2)  {nearby-partitions(e1;p;q)  nearby-partitions(e2;p;q)})


Proof




Definitions occuring in Statement :  nearby-partitions: nearby-partitions(e;p;q) rleq: x ≤ y real: list: List guard: {T} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q guard: {T} member: t ∈ T prop: uall: [x:A]. B[x] nearby-partitions: nearby-partitions(e;p;q) and: P ∧ Q int_seg: {i..j-} uimplies: supposing a lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  nearby-partitions_wf rleq_wf real_wf list_wf rleq_transitivity rabs_wf rsub_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_pairFormation productElimination promote_hyp dependent_functionElimination setElimination rename because_Cache independent_isectElimination natural_numberEquality equalityTransitivity equalitySymmetry unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll

Latex:
\mforall{}p,q:\mBbbR{}  List.  \mforall{}e1,e2:\mBbbR{}.    ((e1  \mleq{}  e2)  {}\mRightarrow{}  \{nearby-partitions(e1;p;q)  {}\mRightarrow{}  nearby-partitions(e2;p;q)\})



Date html generated: 2016_10_26-AM-09_34_23
Last ObjectModification: 2016_08_16-AM-11_45_49

Theory : reals


Home Index