Nuprl Lemma : non-rational_wf
non-rational() ∈ Type
Proof
Definitions occuring in Statement :
non-rational: non-rational()
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
non-rational: non-rational()
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
nat_plus: ℕ+
,
uimplies: b supposing a
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
decidable: Dec(P)
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
top: Top
,
prop: ℙ
,
so_apply: x[s]
Lemmas referenced :
real_wf,
all_wf,
nat_plus_wf,
not_wf,
req_wf,
rdiv_wf,
int-to-real_wf,
rless-int,
nat_plus_properties,
decidable__lt,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformless_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
rless_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
setEquality,
cut,
introduction,
extract_by_obid,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
intEquality,
lambdaEquality,
hypothesisEquality,
setElimination,
rename,
because_Cache,
independent_isectElimination,
inrFormation,
dependent_functionElimination,
productElimination,
independent_functionElimination,
natural_numberEquality,
unionElimination,
approximateComputation,
dependent_pairFormation,
int_eqEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation
Latex:
non-rational() \mmember{} Type
Date html generated:
2017_10_03-AM-10_18_23
Last ObjectModification:
2017_07_10-AM-10_37_24
Theory : reals
Home
Index