Nuprl Lemma : non-rational_wf

non-rational() ∈ Type


Proof




Definitions occuring in Statement :  non-rational: non-rational() member: t ∈ T universe: Type
Definitions unfolded in proof :  non-rational: non-rational() member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: so_apply: x[s]
Lemmas referenced :  real_wf all_wf nat_plus_wf not_wf req_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep setEquality cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin intEquality lambdaEquality hypothesisEquality setElimination rename because_Cache independent_isectElimination inrFormation dependent_functionElimination productElimination independent_functionElimination natural_numberEquality unionElimination approximateComputation dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation

Latex:
non-rational()  \mmember{}  Type



Date html generated: 2017_10_03-AM-10_18_23
Last ObjectModification: 2017_07_10-AM-10_37_24

Theory : reals


Home Index