Nuprl Lemma : partition-choice-ap_wf

I:Interval
  (icompact(I)  (∀p:partition(I). ∀x:partition-choice(full-partition(I;p)). ∀i:ℕ||p|| 1.  (x[i] ∈ {x:ℝx ∈ I} )))


Proof




Definitions occuring in Statement :  partition-choice-ap: x[i] partition-choice: partition-choice(p) full-partition: full-partition(I;p) partition: partition(I) icompact: icompact(I) i-member: r ∈ I interval: Interval real: length: ||as|| int_seg: {i..j-} all: x:A. B[x] implies:  Q member: t ∈ T set: {x:A| B[x]}  add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] uimplies: supposing a prop: full-partition: full-partition(I;p) top: Top decidable: Dec(P) or: P ∨ Q partition: partition(I) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A sq_type: SQType(T) guard: {T} partition-choice-ap: x[i]
Lemmas referenced :  partition-choice-member partition-choice_wf full-partition_wf partition_wf icompact_wf interval_wf length_of_cons_lemma subtype_base_sq int_subtype_base length-append length_of_nil_lemma decidable__equal_int length_wf real_wf satisfiable-full-omega-tt intformnot_wf intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_formula_prop_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination sqequalRule isectElimination independent_isectElimination isect_memberEquality voidElimination voidEquality instantiate cumulativity intEquality because_Cache unionElimination setElimination rename natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality computeAll equalityTransitivity equalitySymmetry

Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}p:partition(I).  \mforall{}x:partition-choice(full-partition(I;p)).  \mforall{}i:\mBbbN{}||p||  +  1.
                (x[i]  \mmember{}  \{x:\mBbbR{}|  x  \mmember{}  I\}  )))



Date html generated: 2016_10_26-AM-09_41_13
Last ObjectModification: 2016_08_15-PM-00_26_25

Theory : reals


Home Index