Nuprl Lemma : partition-choice-ap_wf
∀I:Interval
  (icompact(I) ⇒ (∀p:partition(I). ∀x:partition-choice(full-partition(I;p)). ∀i:ℕ||p|| + 1.  (x[i] ∈ {x:ℝ| x ∈ I} )))
Proof
Definitions occuring in Statement : 
partition-choice-ap: x[i], 
partition-choice: partition-choice(p), 
full-partition: full-partition(I;p), 
partition: partition(I), 
icompact: icompact(I), 
i-member: r ∈ I, 
interval: Interval, 
real: ℝ, 
length: ||as||, 
int_seg: {i..j-}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
prop: ℙ, 
full-partition: full-partition(I;p), 
top: Top, 
decidable: Dec(P), 
or: P ∨ Q, 
partition: partition(I), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
sq_type: SQType(T), 
guard: {T}, 
partition-choice-ap: x[i]
Lemmas referenced : 
partition-choice-member, 
partition-choice_wf, 
full-partition_wf, 
partition_wf, 
icompact_wf, 
interval_wf, 
length_of_cons_lemma, 
subtype_base_sq, 
int_subtype_base, 
length-append, 
length_of_nil_lemma, 
decidable__equal_int, 
length_wf, 
real_wf, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
isectElimination, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
instantiate, 
cumulativity, 
intEquality, 
because_Cache, 
unionElimination, 
setElimination, 
rename, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
computeAll, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}p:partition(I).  \mforall{}x:partition-choice(full-partition(I;p)).  \mforall{}i:\mBbbN{}||p||  +  1.
                (x[i]  \mmember{}  \{x:\mBbbR{}|  x  \mmember{}  I\}  )))
 Date html generated: 
2016_10_26-AM-09_41_13
 Last ObjectModification: 
2016_08_15-PM-00_26_25
Theory : reals
Home
Index