Step
*
2
1
of Lemma
proper-continuous-implies-functional
1. I : Interval
2. f : I ⟶ℝ
3. iproper(I)
4. a : {x:ℝ| x ∈ I}
5. b : {x:ℝ| x ∈ I}
6. a = b
7. m : ℕ+
8. icompact(i-approx(I;m)) ∧ iproper(i-approx(I;m)) ∧ (a ∈ i-approx(I;m))
9. ∀n:ℕ+
(∃d:ℝ [((r0 < d)
∧ (∀x,y:ℝ. ((x ∈ i-approx(I;m))
⇒ (y ∈ i-approx(I;m))
⇒ (|x - y| ≤ d)
⇒ (|f[x] - f[y]| ≤ (r1/r(n))))))])
⊢ f[a] = f[b]
BY
{ (BLemma `req-iff-rabs-rleq` THENW Auto) }
1
1. I : Interval
2. f : I ⟶ℝ
3. iproper(I)
4. a : {x:ℝ| x ∈ I}
5. b : {x:ℝ| x ∈ I}
6. a = b
7. m : ℕ+
8. icompact(i-approx(I;m)) ∧ iproper(i-approx(I;m)) ∧ (a ∈ i-approx(I;m))
9. ∀n:ℕ+
(∃d:ℝ [((r0 < d)
∧ (∀x,y:ℝ. ((x ∈ i-approx(I;m))
⇒ (y ∈ i-approx(I;m))
⇒ (|x - y| ≤ d)
⇒ (|f[x] - f[y]| ≤ (r1/r(n))))))])
⊢ ∀m:ℕ+. (|f[a] - f[b]| ≤ (r1/r(m)))
Latex:
Latex:
1. I : Interval
2. f : I {}\mrightarrow{}\mBbbR{}
3. iproper(I)
4. a : \{x:\mBbbR{}| x \mmember{} I\}
5. b : \{x:\mBbbR{}| x \mmember{} I\}
6. a = b
7. m : \mBbbN{}\msupplus{}
8. icompact(i-approx(I;m)) \mwedge{} iproper(i-approx(I;m)) \mwedge{} (a \mmember{} i-approx(I;m))
9. \mforall{}n:\mBbbN{}\msupplus{}
(\mexists{}d:\mBbbR{} [((r0 < d)
\mwedge{} (\mforall{}x,y:\mBbbR{}.
((x \mmember{} i-approx(I;m))
{}\mRightarrow{} (y \mmember{} i-approx(I;m))
{}\mRightarrow{} (|x - y| \mleq{} d)
{}\mRightarrow{} (|f[x] - f[y]| \mleq{} (r1/r(n))))))])
\mvdash{} f[a] = f[b]
By
Latex:
(BLemma `req-iff-rabs-rleq` THENW Auto)
Home
Index