Nuprl Lemma : proper-continuous-implies-functional

I:Interval. ∀f:I ⟶ℝ.
  (f[x] (proper)continuous for x ∈  iproper(I)  (∀a,b:{x:ℝx ∈ I} .  ((a b)  (f[a] f[b]))))


Proof




Definitions occuring in Statement :  proper-continuous: f[x] (proper)continuous for x ∈ I rfun: I ⟶ℝ i-member: r ∈ I iproper: iproper(I) interval: Interval req: y real: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] label: ...$L... t rfun: I ⟶ℝ iff: ⇐⇒ Q and: P ∧ Q sq_stable: SqStable(P) squash: T exists: x:A. B[x] cand: c∧ B proper-continuous: f[x] (proper)continuous for x ∈ I rev_implies:  Q sq_exists: x:A [B[x]] nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q rless: x < y decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) absval: |i| req_int_terms: t1 ≡ t2
Lemmas referenced :  req_wf set_wf real_wf i-member_wf iproper_wf proper-continuous_wf rfun_wf interval_wf i-member-proper-iff sq_stable__i-member icompact_wf i-approx_wf i-approx-compact req-iff-rabs-rleq sq_stable__rleq rabs_wf rsub_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf nat_plus_wf itermSubtract_wf req-iff-rsub-is-0 minus-zero rleq_weakening_rless i-member_functionality req_inversion rleq_functionality rabs_functionality rsub_functionality req_weakening req_transitivity rabs-int real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality dependent_set_memberEquality setEquality dependent_functionElimination independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination dependent_pairFormation independent_pairFormation productEquality because_Cache natural_numberEquality independent_isectElimination inrFormation unionElimination approximateComputation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality minusEquality

Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    (f[x]  (proper)continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  iproper(I)
    {}\mRightarrow{}  (\mforall{}a,b:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((a  =  b)  {}\mRightarrow{}  (f[a]  =  f[b]))))



Date html generated: 2018_05_22-PM-02_17_18
Last ObjectModification: 2017_10_21-PM-07_38_10

Theory : reals


Home Index