Nuprl Lemma : proper-continuous-implies-functional
∀I:Interval. ∀f:I ⟶ℝ.
  (f[x] (proper)continuous for x ∈ I 
⇒ iproper(I) 
⇒ (∀a,b:{x:ℝ| x ∈ I} .  ((a = b) 
⇒ (f[a] = f[b]))))
Proof
Definitions occuring in Statement : 
proper-continuous: f[x] (proper)continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
iproper: iproper(I)
, 
interval: Interval
, 
req: x = y
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
proper-continuous: f[x] (proper)continuous for x ∈ I
, 
rev_implies: P 
⇐ Q
, 
sq_exists: ∃x:A [B[x]]
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
rless: x < y
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
absval: |i|
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
req_wf, 
set_wf, 
real_wf, 
i-member_wf, 
iproper_wf, 
proper-continuous_wf, 
rfun_wf, 
interval_wf, 
i-member-proper-iff, 
sq_stable__i-member, 
icompact_wf, 
i-approx_wf, 
i-approx-compact, 
req-iff-rabs-rleq, 
sq_stable__rleq, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
nat_plus_wf, 
itermSubtract_wf, 
req-iff-rsub-is-0, 
minus-zero, 
rleq_weakening_rless, 
i-member_functionality, 
req_inversion, 
rleq_functionality, 
rabs_functionality, 
rsub_functionality, 
req_weakening, 
req_transitivity, 
rabs-int, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
dependent_set_memberEquality, 
setEquality, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_pairFormation, 
independent_pairFormation, 
productEquality, 
because_Cache, 
natural_numberEquality, 
independent_isectElimination, 
inrFormation, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
minusEquality
Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    (f[x]  (proper)continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  iproper(I)
    {}\mRightarrow{}  (\mforall{}a,b:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((a  =  b)  {}\mRightarrow{}  (f[a]  =  f[b]))))
Date html generated:
2018_05_22-PM-02_17_18
Last ObjectModification:
2017_10_21-PM-07_38_10
Theory : reals
Home
Index