Step
*
1
1
1
2
1
1
of Lemma
pseudo-positive-is-positive
1. x : ℝ
2. c : ℕ ⟶ ℕ
3. ∀f:ℕ+ ⟶ ℤ. 3-regular-seq(regularize(3;f))
4. (λi.if (i =z 0) then 0 if 4 <z |x| i then |x| i else 0 fi ) = c ∈ (ℕ ⟶ ℕ)
5. accelerate(3;regularize(3;c)) < x
⊢ bdd-diff(accelerate(3;regularize(3;c));|x|)
BY
{ (Using [`b',⌜regularize(3;c)⌝] (BLemma `bdd-diff_transitivity`)⋅ THEN Auto) }
1
1. x : ℝ
2. c : ℕ ⟶ ℕ
3. ∀f:ℕ+ ⟶ ℤ. 3-regular-seq(regularize(3;f))
4. (λi.if (i =z 0) then 0 if 4 <z |x| i then |x| i else 0 fi ) = c ∈ (ℕ ⟶ ℕ)
5. accelerate(3;regularize(3;c)) < x
⊢ bdd-diff(regularize(3;c);|x|)
Latex:
Latex:
1. x : \mBbbR{}
2. c : \mBbbN{} {}\mrightarrow{} \mBbbN{}
3. \mforall{}f:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}. 3-regular-seq(regularize(3;f))
4. (\mlambda{}i.if (i =\msubz{} 0) then 0 if 4 <z |x| i then |x| i else 0 fi ) = c
5. accelerate(3;regularize(3;c)) < x
\mvdash{} bdd-diff(accelerate(3;regularize(3;c));|x|)
By
Latex:
(Using [`b',\mkleeneopen{}regularize(3;c)\mkleeneclose{}] (BLemma `bdd-diff\_transitivity`)\mcdot{} THEN Auto)
Home
Index