Nuprl Lemma : r-rational_wf

[x:ℝ]. (r-rational(x) ∈ ℙ)


Proof




Definitions occuring in Statement :  r-rational: r-rational(x) real: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T r-rational: r-rational(x) so_lambda: λ2x.t[x] nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: so_apply: x[s]
Lemmas referenced :  real_wf rless_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties rless-int int-to-real_wf rdiv_wf req_wf nat_plus_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality lambdaEquality hypothesis hypothesisEquality setElimination rename independent_isectElimination inrFormation dependent_functionElimination because_Cache productElimination independent_functionElimination natural_numberEquality unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x:\mBbbR{}].  (r-rational(x)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-09_50_54
Last ObjectModification: 2016_01_17-AM-02_52_03

Theory : reals


Home Index