Nuprl Lemma : r2-det-add
∀[p,q,r,t:ℝ^2]. (|p + tqr| = (|pqr| + |tqr| + (((q 1) * (r 0)) - (q 0) * (r 1))))
Proof
Definitions occuring in Statement :
r2-det: |pqr|
,
real-vec-add: X + Y
,
real-vec: ℝ^n
,
rsub: x - y
,
req: x = y
,
rmul: a * b
,
radd: a + b
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
r2-det: |pqr|
,
real-vec-add: X + Y
,
all: ∀x:A. B[x]
,
itermConstant: "const"
,
req_int_terms: t1 ≡ t2
,
real-vec: ℝ^n
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
prop: ℙ
,
less_than: a < b
,
squash: ↓T
,
true: True
,
real_term_value: real_term_value(f;t)
,
int_term_ind: int_term_ind,
itermSubtract: left (-) right
,
itermAdd: left (+) right
,
itermMultiply: left (*) right
,
itermVar: vvar
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
nat: ℕ
Lemmas referenced :
real_term_polynomial,
itermSubtract_wf,
itermAdd_wf,
itermMultiply_wf,
itermVar_wf,
lelt_wf,
int-to-real_wf,
req-iff-rsub-is-0,
rsub_wf,
radd_wf,
rmul_wf,
req_witness,
r2-det_wf,
real-vec-add_wf,
false_wf,
le_wf,
real-vec_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isectElimination,
natural_numberEquality,
hypothesis,
computeAll,
lambdaEquality,
int_eqEquality,
hypothesisEquality,
applyEquality,
because_Cache,
dependent_set_memberEquality,
equalityTransitivity,
equalitySymmetry,
independent_pairFormation,
lambdaFormation,
imageMemberEquality,
baseClosed,
intEquality,
productElimination,
independent_isectElimination,
independent_functionElimination,
isect_memberEquality
Latex:
\mforall{}[p,q,r,t:\mBbbR{}\^{}2]. (|p + tqr| = (|pqr| + |tqr| + (((q 1) * (r 0)) - (q 0) * (r 1))))
Date html generated:
2017_10_03-AM-11_44_13
Last ObjectModification:
2017_04_11-PM-05_31_23
Theory : reals
Home
Index