Nuprl Lemma : r2-det-add

[p,q,r,t:ℝ^2].  (|p tqr| (|pqr| |tqr| (((q 1) (r 0)) (q 0) (r 1))))


Proof




Definitions occuring in Statement :  r2-det: |pqr| real-vec-add: Y real-vec: ^n rsub: y req: y rmul: b radd: b uall: [x:A]. B[x] apply: a natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T r2-det: |pqr| real-vec-add: Y all: x:A. B[x] itermConstant: "const" req_int_terms: t1 ≡ t2 real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: less_than: a < b squash: T true: True real_term_value: real_term_value(f;t) int_term_ind: int_term_ind itermSubtract: left (-) right itermAdd: left (+) right itermMultiply: left (*) right itermVar: vvar uiff: uiff(P;Q) uimplies: supposing a nat:
Lemmas referenced :  real_term_polynomial itermSubtract_wf itermAdd_wf itermMultiply_wf itermVar_wf lelt_wf int-to-real_wf req-iff-rsub-is-0 rsub_wf radd_wf rmul_wf req_witness r2-det_wf real-vec-add_wf false_wf le_wf real-vec_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality hypothesis computeAll lambdaEquality int_eqEquality hypothesisEquality applyEquality because_Cache dependent_set_memberEquality equalityTransitivity equalitySymmetry independent_pairFormation lambdaFormation imageMemberEquality baseClosed intEquality productElimination independent_isectElimination independent_functionElimination isect_memberEquality

Latex:
\mforall{}[p,q,r,t:\mBbbR{}\^{}2].    (|p  +  tqr|  =  (|pqr|  +  |tqr|  +  (((q  1)  *  (r  0))  -  (q  0)  *  (r  1))))



Date html generated: 2017_10_03-AM-11_44_13
Last ObjectModification: 2017_04_11-PM-05_31_23

Theory : reals


Home Index