Nuprl Lemma : r2-det-add
∀[p,q,r,t:ℝ^2].  (|p + tqr| = (|pqr| + |tqr| + (((q 1) * (r 0)) - (q 0) * (r 1))))
Proof
Definitions occuring in Statement : 
r2-det: |pqr|
, 
real-vec-add: X + Y
, 
real-vec: ℝ^n
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
r2-det: |pqr|
, 
real-vec-add: X + Y
, 
all: ∀x:A. B[x]
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
real_term_value: real_term_value(f;t)
, 
int_term_ind: int_term_ind, 
itermSubtract: left (-) right
, 
itermAdd: left (+) right
, 
itermMultiply: left (*) right
, 
itermVar: vvar
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
nat: ℕ
Lemmas referenced : 
real_term_polynomial, 
itermSubtract_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
lelt_wf, 
int-to-real_wf, 
req-iff-rsub-is-0, 
rsub_wf, 
radd_wf, 
rmul_wf, 
req_witness, 
r2-det_wf, 
real-vec-add_wf, 
false_wf, 
le_wf, 
real-vec_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
lambdaFormation, 
imageMemberEquality, 
baseClosed, 
intEquality, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
isect_memberEquality
Latex:
\mforall{}[p,q,r,t:\mBbbR{}\^{}2].    (|p  +  tqr|  =  (|pqr|  +  |tqr|  +  (((q  1)  *  (r  0))  -  (q  0)  *  (r  1))))
Date html generated:
2017_10_03-AM-11_44_13
Last ObjectModification:
2017_04_11-PM-05_31_23
Theory : reals
Home
Index