Nuprl Lemma : r2-det-identity
∀[p,q,r,t:ℝ^2].  (|pqr| = (|tqr| + |ptr| + |pqt|))
Proof
Definitions occuring in Statement : 
r2-det: |pqr|, 
real-vec: ℝ^n, 
req: x = y, 
radd: a + b, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
r2-det: |pqr|, 
implies: P ⇒ Q, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
real-vec: ℝ^n, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
squash: ↓T, 
true: True, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
req_int_terms: t1 ≡ t2, 
top: Top
Lemmas referenced : 
req_witness, 
r2-det_wf, 
radd_wf, 
real-vec_wf, 
false_wf, 
le_wf, 
rsub_wf, 
rmul_wf, 
lelt_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
int-to-real_wf, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
isect_memberEquality, 
because_Cache, 
applyEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
approximateComputation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[p,q,r,t:\mBbbR{}\^{}2].    (|pqr|  =  (|tqr|  +  |ptr|  +  |pqt|))
Date html generated:
2017_10_03-AM-11_42_30
Last ObjectModification:
2017_06_09-PM-01_55_23
Theory : reals
Home
Index