Nuprl Lemma : r2-det_functionality
∀[p,q,r,p',q',r':ℝ^2].  (|pqr| = |p'q'r'|) supposing (req-vec(2;r;r') and req-vec(2;q;q') and req-vec(2;p;p'))
Proof
Definitions occuring in Statement : 
r2-det: |pqr|, 
req-vec: req-vec(n;x;y), 
real-vec: ℝ^n, 
req: x = y, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
req-vec: req-vec(n;x;y), 
implies: P ⇒ Q, 
prop: ℙ, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
r2-det: |pqr|, 
real-vec: ℝ^n, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
squash: ↓T, 
true: True, 
all: ∀x:A. B[x], 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
r2-det_wf, 
req-vec_wf, 
false_wf, 
le_wf, 
real-vec_wf, 
rsub_wf, 
radd_wf, 
rmul_wf, 
lelt_wf, 
req_weakening, 
req_functionality, 
rsub_functionality, 
radd_functionality, 
rmul_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
dependent_functionElimination, 
productElimination
Latex:
\mforall{}[p,q,r,p',q',r':\mBbbR{}\^{}2].
    (|pqr|  =  |p'q'r'|)  supposing  (req-vec(2;r;r')  and  req-vec(2;q;q')  and  req-vec(2;p;p'))
Date html generated:
2017_10_03-AM-11_41_23
Last ObjectModification:
2017_04_11-PM-05_29_29
Theory : reals
Home
Index