Nuprl Lemma : r2-not-left-right-iff

a,b,c:ℝ^2.  (r2-left(a;b;c) ∨ r2-left(a;c;b)) ⇐⇒ ¬((¬a_b_c) ∧ b_c_a) ∧ c_a_b)))


Proof




Definitions occuring in Statement :  r2-left: r2-left(p;q;r) rv-be: a_b_c real-vec: ^n all: x:A. B[x] iff: ⇐⇒ Q not: ¬A or: P ∨ Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q not: ¬A and: P ∧ Q nat: le: A ≤ B less_than': less_than'(a;b) false: False prop: uall: [x:A]. B[x] iff: ⇐⇒ Q rv-be: a_b_c or: P ∨ Q guard: {T} cand: c∧ B rev_implies:  Q uimplies: supposing a
Lemmas referenced :  r2-not-left-right rv-T-iff false_wf le_wf rv-T_wf not_wf real-vec-sep_wf rv-between_wf r2-left_wf rv-be_wf or_wf real-vec_wf r2-left-pos-angle rv-pos-angle-permute rv-pos-angle-symmetry rv-pos-angle-not-be
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination productElimination independent_pairFormation impliesFunctionality dependent_set_memberEquality natural_numberEquality sqequalRule isectElimination productEquality because_Cache promote_hyp inlFormation voidElimination inrFormation unionElimination independent_isectElimination

Latex:
\mforall{}a,b,c:\mBbbR{}\^{}2.    (\mneg{}(r2-left(a;b;c)  \mvee{}  r2-left(a;c;b))  \mLeftarrow{}{}\mRightarrow{}  \mneg{}((\mneg{}a\_b\_c)  \mwedge{}  (\mneg{}b\_c\_a)  \mwedge{}  (\mneg{}c\_a\_b)))



Date html generated: 2017_10_03-AM-11_58_38
Last ObjectModification: 2017_08_11-PM-10_59_04

Theory : reals


Home Index