Nuprl Lemma : r2-not-left-right-iff
∀a,b,c:ℝ^2.  (¬(r2-left(a;b;c) ∨ r2-left(a;c;b)) 
⇐⇒ ¬((¬a_b_c) ∧ (¬b_c_a) ∧ (¬c_a_b)))
Proof
Definitions occuring in Statement : 
r2-left: r2-left(p;q;r)
, 
rv-be: a_b_c
, 
real-vec: ℝ^n
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
and: P ∧ Q
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
rv-be: a_b_c
, 
or: P ∨ Q
, 
guard: {T}
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
Lemmas referenced : 
r2-not-left-right, 
rv-T-iff, 
false_wf, 
le_wf, 
rv-T_wf, 
not_wf, 
real-vec-sep_wf, 
rv-between_wf, 
r2-left_wf, 
rv-be_wf, 
or_wf, 
real-vec_wf, 
r2-left-pos-angle, 
rv-pos-angle-permute, 
rv-pos-angle-symmetry, 
rv-pos-angle-not-be
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
isectElimination, 
productEquality, 
because_Cache, 
promote_hyp, 
inlFormation, 
voidElimination, 
inrFormation, 
unionElimination, 
independent_isectElimination
Latex:
\mforall{}a,b,c:\mBbbR{}\^{}2.    (\mneg{}(r2-left(a;b;c)  \mvee{}  r2-left(a;c;b))  \mLeftarrow{}{}\mRightarrow{}  \mneg{}((\mneg{}a\_b\_c)  \mwedge{}  (\mneg{}b\_c\_a)  \mwedge{}  (\mneg{}c\_a\_b)))
Date html generated:
2017_10_03-AM-11_58_38
Last ObjectModification:
2017_08_11-PM-10_59_04
Theory : reals
Home
Index